K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2017

a)Đặt \(A=8^9+7^9+6^9+5^9+4^9+3^9+2^9+1^9\)

\(A< 8^9+8^9+8^9+8^9+8^9+8^9+8^9+8^9\)

\(A< 8\cdot8^9\)

\(A< 8^{10}< 9^{10}\)

\(\Rightarrow9^{10}>8^9+7^9+6^9+5^9+4^9+3^9+2^9+1^9\)

16 tháng 3 2017

a) \(8^9+7^9+6^9+5^9+4^9+3^9+2^9+1^9\)

(8+7+6+5+4+3+2+1)9

369

Vậy369>99

13 tháng 10 2015

c,

(434)10. 433- (174)4 . 17

(434)10 co chu so tan cung la 1

433 co chu so tan cung la 7

(174)4 co chu so tan cung la 1

17 co chu so tan cung la 7

suy ra 4343-1717 co tan cung la chu so 0 chia het cho10

vay hieu 4343-1717 chia het cho 10

11 tháng 9 2019

Chứng minh \(S=3+3^2+...+3^{100}⋮120\)

Ta có \(S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)=120+...+3^{96}.120⋮120\)

Vậy \(S=3+3^2+...+3^{100}⋮120\)

Chứng minh \(P=36^{36}-9^{10}⋮45\)

Cái này dùng đồng dư thức

\(P=36^{36}-9^{10}\equiv1-4^{10}\equiv1-16^5\equiv1-10\equiv0\left(mod5\right)\)

Mà dễ thấy P chia hết cho 9 và \(\left(9;5\right)=1\)

Vậy P chia hết cho 45

Chứng minh \(M=7^{1000}-3^{1000}⋮10\)

Ta có \(M=7^{1000}-3^{1000}=\left(2401\right)^{250}-\left(81\right)^{250}\equiv1-1\equiv0\left(mod10\right)\)

Vậy M chia hết cho 10

16 tháng 8 2017
a) Muốn CM cxhia hết cho 45 thì phải CM chia hết cho 9 và 5 Ta có 36 chia hết cho 9 => 36^36 chia hết cho 9 9 chia hết cho 9 => 9^10 chia hết cho 9 (1) Lại có 36^36 có tận cùng là 6, 9^10 có tân cùng là 1 => 36^36-9^10 có tậ cùng là 5=> chia hét cho 5 (2) Từ (1) và (2) suy ra 36^36-9^10 chia hết cho 45 Còn câu b đợi mk tí
16 tháng 8 2017

Ta có 71000=(74)250=(...1)250=(...1)

         31000=(34)250=(...1)250=(...1)

         =>71000-31000=(...1)-(...1)=(...0)=>chia hết cho 10=> điều phải cm

Chúc bn học tốt!!

#Zon_của_Dôn      

10 tháng 6 2018

a) \(7^6+7^5-7^4=7^4.7^2+7^4.7+7^4.1\)

                            \(=7^4.\left(7^2+7-1\right)\)

                            \(=7^4.55\)

Mà \(55⋮11\Rightarrow7^4.55⋮11\Leftrightarrow7^6+7^5-7^4⋮11\left(đpcm\right).\)

b) \(10^9+10^8+10^7=10^6.10^3+10^6.10^2+10^6.10\)

                                    \(=10^6.\left(10^3+10^2+10\right)\)

                                    \(=10^6.1110\)

Mà \(1110⋮222\Rightarrow10^6.110⋮222\Leftrightarrow10^9+10^8+10^7⋮222\left(đpcm\right).\)

c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)

                                   \(=3^{28}-3^{27}-3^{26}\)

                                   \(=3^{26}.3^2+3^{26}.3+3^{26}.1\)

                                   \(=3^{26}.\left(3^2+3+1\right)\)

                                   \(=3^{24}.3^2.5\)

                                   \(=3^{24}.45\)

Mà \(45⋮45\Rightarrow3^{24}.45⋮45\Leftrightarrow81^7-27^9-9^{13}⋮45\left(đpcm\right).\)

d) \(24^{54}.54^{24}.2^{10}=\left(8.3\right)^{54}.\left(27.2\right)^{24}.2^{10}\)

                             \(=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}\)

                             \(=\left(2^3\right)^{54}.3^{54}.\left(3^3\right)^{24}.2^{24}.2^{10}\)

                             \(=2^{162}.3^{54}.3^{72}.2^{34}\)

                             \(=2^{196}.3^{126}\)

                            \(=2^{189}.2^7.3^{126}\)

                           \(=\left[\left(2^3\right)^{63}.\left(3^2\right)^{63}\right].2^7\)

                           \(=\left(8^{63}.9^{63}\right).2^7\)

                          \(=72^{63}.2^7\)

Mà \(72^{63}⋮72^{63}\Rightarrow72^{63}.2^7⋮72^{63}\Leftrightarrow24^{54}.54^{24}.2^{10}⋮72^{63}\left(đpcm\right).\)

10 tháng 6 2018

hè rùi đó nha 

17 tháng 3 2017

ý a ) bạn dưới chứng minh rồi nha ; mình làm ý b

Ta có :

\(8^9< 9^9\)

\(7^9< 9^9\)

\(6^9< 9^9\)

\(........\)

\(1^9>9^9\)

Cộng vế với vế ta được :

\(8^9+7^9+...+1^9< 9^9+9^9+...+9^9\) (có 8 số hạng \(9^9\) ) \(=8.9^9< 9.9^9=9^{10}\)

Vậy \(8^9+7^9+6^9+....+1^9< 9^{10}\)

17 tháng 3 2017

a,(36^36-9^10):45

vì 45=9x5

=>(36^36-9^10) chia hết cho 9(1)

36^36 tận cùng là 6

9^10 tận cùng là 1

=>36^36-9^10 tận cùng là 5 và do đó chia hết cho 5

Vì 5 và 9 là 2 số nguyên tố cùng nhau nên từ (1),(2)=>36^36-9^10 chia hết cho 45

19 tháng 9 2016

a) 76 + 75 - 74 = 74(72 + 7 - 1) = 74.55 chia hết cho 55

b) 817 - 279 + 329 = (34)7 - (33)9 + 329 = 328 - 327 + 329 = 326(32 - 3 + 33) = 326.33 chia hết cho 33

c) 812 - 233 - 230 = (23)12 - 233 - 230 = 236 - 233 - 230 = 230(26 - 23 - 1) = 230.55 chia hết cho 55

d) 109 + 108 + 107 = 107(102 + 10 + 1) = 107.111 mà 107 chia hết cho 5(vì tận cùng là 0) => 109 + 108 + 107 chia hết  : 111.5 = 555

e) 911 - 910 - 99 = 98(93 - 92 - 9) = 98.639 chia hết cho 639 =>\(\frac{9^{11}-9^{10}-9^9}{639}\in N\) 

f) 817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 = 324(34 - 33 - 32) = 324.45 chia hết cho 45.

19 tháng 9 2016

a) 76+75-74

= 74(72+7-1)

= 74 . 55 chia hết cho 55 (đpcm)

b) Thôi tôi đi ngủ đây nhớ k cho tôi

6 tháng 7 2015

a) => 5^5 - 5^4 + 5^3 = 5^3(5^2 - 5+1) = 5^3(25-5+1) = 5^3 x 21 = 5^3 x 3 x 7 chia hết cho 7

b) 81^7 - 27^9 - 9^13 = 3^28 - 3^27 - 3^26 = 3^26(3^2 - 3 - 1)= 3^26 x 5 = 3^24 x 45 chia hết cho 45

c) 16^5 + 2^15 = 2^20 + 2^15 = 2^15 (2^5 + 1) = 2^15 x 33 chia hết cho 33

d) = 51! x 52 x 53 - 51! = 51! x (52 x 53 - 1) = 51! x 2755. Vì 51! chia hết cho 45 nên 51! x 2755 chia hết cho 45

6 tháng 7 2015

\(a,<=>5.\left(5^2-5+1\right)=5.\left(25-5+1\right)=5.21=5.7.3\)

vì tích trên có chứa thừa số 7 nên tích đó chia hết cho 7

\(b,<=>3^{28}-3^{27}-3^{26}=3^{24}.\left(3^4-3^3-3^2\right)=3^{24}.45\)

vì tích trên có chứa thừa số 45 nên tích đó chia hết cho 45