Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác BCB'C' có
\(\widehat{BC'C}=\widehat{BB'C}\left(=90^0\right)\)
\(\widehat{BC'C}\) và \(\widehat{BB'C}\) là hai góc cùng nhìn cạnh BC
Do đó: BCB'C' là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: Xét tứ giác BCB'C' có
\(\widehat{BC'C}=\widehat{BB'C}=90^0\)
Do đó: BCB'C' là tứ giác nội tiếp
Ta có:
BB' là đường cao (gt). \(\Rightarrow BB'\perp AC.\)
CC' là đường cao (gt). \(\Rightarrow CC'\perp AB.\)
Xét tứ giác BCB'C':
\(\widehat{BC'C}=\widehat{BB'C}\left(CC'\perp AB;BB'\perp AC\right).\)Mà 2 đỉnh này ở vị trí kề nhau, cùng nhìn cạnh BC.\(\Rightarrow\) Tứ giác BCB'C' nội tiếp (dhnb).a, Xét tứ giác BCB'C' có đỉnh C' và B' kề nhau và cùng nhìn đoạn BC dưới 1 góc 90o => Tứ giác BCB'C' là tứ giác nội tiếp
b, kẻ đường kính AK, gọi giao điểm của AO và B'C' là H
Ta có: góc BAK = 1/2 sđ cung BK ( góc nội tiếp) (1)
góc AC'B' = góc B'CB ( góc ngoài ) = 1/2 sđ cung AB ( góc nội tiếp) (2)
Từ (1) và (2) => góc BAK + AC'B' = \(\frac{sđcungBK}{2}+\frac{sđcungAB}{2}\)=sđ cung AK / 2 = 180o /2 = 90o
Theo tổng 3 góc trong 1 tam giác => góc AHC' = 90o
hay AO vuông góc C'B' (đpcm)
cho mình hỏi tại sao góc AC'B' = góc B'CB ( góc ngoài ) = 1/2 sđ cung AB . Mình thấy góc AC'B' có bằng góc B'CB đâu
a) Tứ giác BCB'C' có \(\widehat{BC'C}=\widehat{BB'C}=90^o\) nên nó là tứ giác nội tiếp (2 đỉnh kề nhau nhìn cạnh đối diện dưới 2 góc bằng nhau)
b) Vì tứ giác BCB'C' nội tiếp nên \(\widehat{AB'C'}=\widehat{ABC}\) (góc ngoài bằng góc trong đối)
Xét tam giác AB'C' và tam giác ABC có:
\(\widehat{BAC}\) chung và \(\widehat{AB'C'}=\widehat{ABC}\)
\(\Rightarrow\Delta AB'C'\sim\Delta ABC\left(g.g\right)\)
c) Theo câu b), ta có \(\widehat{AB'I}=\widehat{ABC}\)
Lại có \(\widehat{ABC}=\widehat{ADC}\) (góc nội tiếp cùng chắn cung AC)
\(\Rightarrow\widehat{AB'I}=\widehat{ADC}\) \(\Rightarrow\) Tứ giác B'IDC nội tiếp (góc ngoài bằng góc trong đối)
a: Xét tứ giác BC'B'C có \(\widehat{BC'C}=\widehat{BB'C}=90^0\)
nên BC'B'C là tứ giác nội tiếp
b: Ta có: BC'B'C là tứ giác nội tiếp
=>\(\widehat{BC'B'}+\widehat{BCB'}=180^0\)
mà \(\widehat{BC'B'}+\widehat{AC'B'}=180^0\)
nên \(\widehat{AC'B'}=\widehat{ACB}\)
Xét ΔAC'B' và ΔACB có
\(\widehat{AC'B'}=\widehat{ACB}\)
\(\widehat{CAB}\) chung
Do đó: ΔAC'B'~ΔACB