Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3sin^4x+cos^4x=\dfrac{3}{4}\Leftrightarrow\dfrac{\left(sin^2x\right)^2}{1}+\dfrac{\left(cos^2x\right)^2}{3}=\dfrac{1}{4}\)
Áp dụng BĐT Cauchy-Schwarz:
\(\dfrac{\left(sin^2x\right)^2}{1}+\dfrac{\left(cos^2x\right)^2}{3}\ge\dfrac{\left(sin^2x+cos^2x\right)^2}{1+3}=\dfrac{1}{4}\)
Dấu "=" xảy khi khi và chỉ khi: \(sin^2x=\dfrac{cos^2x}{3}\Rightarrow sin^4x=\dfrac{cos^4x}{9}\)
Thay vào biểu thức ban đầu:
\(3\left(\dfrac{cos^4x}{9}\right)+cos^4x=\dfrac{3}{4}\Leftrightarrow\dfrac{4}{3}cos^4x=\dfrac{3}{4}\Rightarrow cos^4x=\dfrac{9}{16}\)
\(\Rightarrow A=\dfrac{cos^4x}{9}+3cos^4x=\dfrac{9}{16.9}+\dfrac{3.9}{16}=\dfrac{7}{4}\)
\(D=\frac{9sin^2x-4cos^2x}{3sin^2x+2cos^2x}=\frac{\frac{9sin^2x}{cos^2x}-\frac{4cos^2x}{cos^2x}}{\frac{3sin^2x}{cos^2x}+\frac{2cos^2x}{cos^2x}}=\frac{9tan^2x-4}{3tan^2x+2}=\frac{77}{29}\)
\(\frac{\left(sin^2x\right)^2}{\frac{1}{3}}+\frac{\left(cos^2x\right)^2}{1}\ge\frac{\left(sin^2x+cos^2x\right)^2}{\frac{1}{3}+1}=\frac{3}{4}\)
Dấu "=" xảy ra khi và chỉ khi \(3sin^2x=cos^2x\)
\(\Rightarrow cos^4x=9sin^4x\Rightarrow3sin^4x+9sin^4x=\frac{3}{4}\)
\(\Rightarrow sin^4x=\frac{1}{16}\Rightarrow cos^4x=\frac{9}{16}\)
\(\Rightarrow S=\frac{1}{16}+\frac{27}{16}=\frac{7}{4}\)
\(A=cot^2x+tan^2x+2-\left(cot^2x+tan^2x-2\right)=4\)
\(B=cos^2x.cot^2x-cot^2x+cos^2x+2\left(sin^2x+cos^2x\right)\)
\(=cot^2x\left(cos^2x-1\right)+cos^2x+2\)
\(=-cot^2x.sin^2x+cos^2x+2\)
\(=-cos^2x+cos^2x+2=2\)
\(C=\left(sin^4x+cos^4x\right)^2+4sin^4x.cos^4x+4sin^2xcos^2x\left(sin^4x+cos^4x\right)+1\)
\(=\left(sin^4x+cos^4x+2sin^2x.cos^2x\right)^2+1\)
\(=\left(sin^2x+cos^2x\right)^4+1\)
\(=1^4+1=2\)
\(A=2(\sin ^6x+\cos ^6x)-3(\sin ^4x+\cos ^4x)\)
\(=2(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-3(\sin ^4x+\cos ^4x)\)
\(=2(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-3(\sin ^4x+\cos ^4x)\)
\(=-(\sin ^4x+2\sin ^2x\cos ^2x+\cos ^4x)=-(\sin ^2x+\cos ^2x)^2=-1^2=-1\)
là giá trị không phụ thuộc vào biến (đpcm)
-----------------------
\(B=\sin ^6x+\cos ^6x-2\sin ^4x-\cos ^4x+\sin ^2x\)
\(=(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-2\sin ^4x-\cos ^4x+\sin ^2x\)
\(=\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x-2\sin ^4x-\cos ^4x+\sin ^2x\)
\(=-\sin ^4x-\sin ^2x\cos ^2x+\sin ^2x=-\sin ^2x(\sin ^2x+\cos ^2x)+\sin ^2x\)
\(=-\sin ^2x+\sin ^2x=0\)
là giá trị không phụ thuộc vào biến (đpcm)
\(C=(\sin ^4x+\cos ^4x-1)(\tan ^2x+\cot ^2x+2)=(\sin ^4x+\cos ^4x-1)(\frac{\sin ^2x}{\cos ^2x}+\frac{\cos ^2x}{\sin ^2x}+2)\)
\(=(\sin ^4x+\cos ^4x-1).\frac{\sin ^4x+\cos ^4x+2\sin ^2x\cos ^2x}{\sin ^2x\cos ^2x}=(\sin ^4x+\cos ^4x-1).\frac{(\sin ^2x+\cos ^2x)^2}{\sin ^2x\cos ^2x}\)
\(=(\sin ^4x+\cos ^4x-1).\frac{1}{\sin ^2x\cos ^2x}=\frac{(\sin ^2x)^2+(\cos ^2x)^2+2\sin ^2x\cos ^2x-2\sin ^2x\cos ^2x-1}{\sin ^2x\cos ^2x}\)
\(=\frac{(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x-1}{\sin ^2x\cos ^2x}=\frac{1-2\sin ^2x\cos ^2x-1}{\sin ^2x\cos ^2x}=\frac{-2\sin ^2x\cos ^2x}{\sin ^2x\cos ^2x}=-2\)
là giá trị không phụ thuộc vào biến $x$
--------------------
\(D=\frac{1}{\cos ^6x}-\tan ^6x-\frac{\tan ^2x}{\cos ^2x}=\frac{1}{\cos ^6x}-\frac{\sin ^6x}{\cos ^6x}-\frac{\sin ^2x}{\cos ^4x}\)
\(=\frac{1-\sin ^6x-\sin ^2x\cos ^2x}{\cos ^6x}=\frac{(\sin ^2x+\cos ^2x)^3-\sin ^6x-\sin ^2x\cos ^2x}{\cos ^6x}\)
\(=\frac{\sin ^6x+\cos ^6x+3\sin ^2x\cos ^2x(\sin ^2x+\cos ^2x)-\sin ^6x-\sin ^2x\cos ^2x}{\cos ^6x}\)
\(=\frac{\cos ^6x+3\sin ^2x\cos ^2x-\sin ^2x\cos ^2x}{\cos ^6x}=\frac{\cos ^4x+2\sin ^2x}{\cos ^4x}\)
\(=1+\frac{2\sin ^2x}{\cos ^4x}\)
Giá trị biểu thức này vẫn phụ thuộc vào $x$. Bạn xem lại đề.
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((3\sin ^4x+\cos ^4x)(\frac{1}{3}+1)\geq (\sin ^2x+\cos ^2x)^2=1\)
\(\Leftrightarrow 3\sin ^4x+\cos ^4x\geq \frac{3}{4}\)
Dấu "=" xảy ra khi \(3\sin ^2x=\cos ^2x\). Mà $\sin ^2x+\cos ^2x=1$ nên suy ra:
$\sin ^2x=\frac{1}{4}; \cos ^2x=\frac{3}{4}$
$\Rightarrow A=(\frac{1}{4})^2+3(\frac{3}{4})^2=\frac{7}{4}$
Ta có:
\(3sin^4x+cos^4x=\frac{\left(sin^2x\right)^2}{\frac{1}{3}}+\frac{\left(cos^2x\right)^2}{1}\ge\frac{\left(sin^2x+cos^2x\right)^2}{\frac{1}{3}+1}=\frac{1}{\frac{4}{3}}=\frac{3}{4}\)
Dấu "=" xảy ra khi và chỉ khi \(3sin^2x=cos^2x\Leftrightarrow4sin^2x=1\Rightarrow sin^2x=\frac{1}{4}\Rightarrow cos^2x=\frac{3}{4}\)
\(\Rightarrow A=\left(\frac{1}{4}\right)^2+3.\left(\frac{3}{4}\right)^2=\frac{7}{4}\)
Giả sử các biểu thức đều có nghĩa
\(A=2\left(\left(sin^2x\right)^3+\left(cos^2x\right)^3\right)-3\left(sin^4x+cos^4x+2sin^2xcos^2x-2sin^2xcos^2x\right)\)
\(A=2\left(sin^2x+cos^2x\right)\left(\left(sin^2x+cos^2x\right)^2-3sin^2xcos^2x\right)-3\left(\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\right)\)
\(A=2\left(1-3sin^2xcos^2x\right)-3\left(1-2sin^2xcos^2x\right)\)
\(A=2-6sin^2xcos^2x-3+6sin^2xcos^2x=-1\)
b/ \(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{tanx-1}=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{\dfrac{1}{cotx}-1}\)
\(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2cotx}{1-cotx}=\dfrac{1+cotx-2cotx}{1-cotx}=\dfrac{1-cotx}{1-cotx}=1\)
c/ \(C=cos^4x-sin^4x+cos^4x+sin^2xcos^2x+3sin^2x\)
\(C=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)+cos^2x\left(cos^2x+sin^2x\right)+3sin^2x\)
\(C=cos^2x-sin^2x+cos^2x+3sin^2x\)
\(C=2cos^2x+2sin^2x=2\left(cos^2x+sin^2x\right)=2\)
\(=\sqrt{sin^4x+4\left(1-sin^2x\right)}+\sqrt{cos^4x+4\left(1-cos^2x\right)}\)
\(=\sqrt{4-4sin^2x+sin^4x}+\sqrt{4-4cos^2x+cos^4x}\)
\(=\sqrt{\left(2-sin^2x\right)^2}+\sqrt{\left(2-cos^2x\right)^2}\)
\(=2-sin^2x+2-cos^2x=4-\left(sin^2x+cos^2x\right)\)
\(=3\)
\(3sin^4x-\left(1-sin^2x\right)^2=\frac{1}{2}\Leftrightarrow3sin^4x-\left(sin^4x-2sin^2x+1\right)=\frac{1}{2}\)
\(\Leftrightarrow2sin^4x+2sin^2x-\frac{3}{2}=0\) \(\Rightarrow\left[{}\begin{matrix}sin^2x=\frac{1}{2}\\sin^2x=-\frac{3}{2}< 0\left(l\right)\end{matrix}\right.\)
\(\Rightarrow cos^2x=1-\frac{1}{2}=\frac{1}{2}\)
\(\Rightarrow B=\left(\frac{1}{2}\right)^2+3\left(\frac{1}{2}\right)^2=1\)
\(4sin^4x+3\left(1-sin^2x\right)^2=\frac{7}{4}\Leftrightarrow4sin^4x+3\left(sin^4x-2sin^2x+1\right)=\frac{7}{4}\)
\(\Leftrightarrow7sin^4x-6sin^2x+\frac{5}{4}=0\Rightarrow\left[{}\begin{matrix}sin^2x=\frac{1}{2}\Rightarrow cos^2x=\frac{1}{2}\\sin^2x=\frac{5}{14}\Rightarrow cos^2x=\frac{9}{14}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}C=3\left(\frac{1}{2}\right)^2+4\left(\frac{1}{2}\right)^2=\frac{7}{4}\\C=3\left(\frac{5}{14}\right)^2+4\left(\frac{9}{14}\right)^2=\frac{57}{28}\end{matrix}\right.\)