Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình xin làm câu Vi-et thôi.
2/ \(2x^2-2mx-m-5=0\left(1\right)\)
a/ ( a = 2; b = -2m; c = -m - 5 )
\(\Delta=b^2-4ac\)
\(=\left(-2m\right)^2-4.2.\left(-m-5\right)\)
\(=4m^2+8m+40\)
\(=\left(2m\right)^2+8m+2^2-2^2+40\)
\(=\left(2m+2\right)^2+36>0\forall m\)
Vậy pt luôn có 2 nghiệm phân biệt với mọi m
b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=\frac{2m}{2}=m\\P=x_1x_2=\frac{c}{a}=\frac{-m-5}{2}\end{cases}}\)
Ta có: \(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=15\)
\(\Leftrightarrow x_1^2-2x_1x_2+x_2^2-2x_1x_2=15\)
\(\Leftrightarrow S^2-2P-4x_1x_2=15\)
\(\Leftrightarrow m^2-2.\frac{-m-5}{2}-4S=15\)
\(\Leftrightarrow m^2+\frac{2m+10}{2}-4m=15\)
Quy đồng bỏ mẫu, mẫu chung là 2:
\(\Leftrightarrow2m^2+2m+10-8m=15\)
\(\Leftrightarrow2m^2-6m+10=15\)
\(\Leftrightarrow2\left(m^2-3m+5\right)=15\)
\(\Leftrightarrow m^2-3m+5=\frac{15}{2}\)
\(\Leftrightarrow m^2-3m+5-\frac{15}{2}=0\)
\(\Leftrightarrow m^2-3m-\frac{5}{2}=0\)
\(\Leftrightarrow m^2-3m+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-\frac{5}{2}=0\)
\(\Leftrightarrow\left(m-\frac{3}{2}\right)^2-\frac{19}{4}=0\)
\(\Leftrightarrow\left(m-\frac{3}{2}\right)^2=\frac{19}{4}\)
\(\Leftrightarrow\left(m-\frac{3}{2}\right)^2=\left(\frac{\sqrt{19}}{2}\right)^2\)
\(\Leftrightarrow m-\frac{3}{2}=\frac{\sqrt{19}}{2}\Leftrightarrow m=\frac{3+\sqrt{19}}{2}\)
Vậy:..
Cho hàm số y=f(x)=x3-3x2+1
a)Xác định điểm I thuộc đồ thị (C) của hàm số đã cho biết rằng hoành độ của điểm I là nghiệm của Phương trình f’’(x)= 0.
b)Viết công thức chuyển hệ tọa độ trong phép tịnh tiến vectơ OI và viết Phương trình của đường cong với hệ tọa độ IXY. Từ đó suy ra bằng I là tâm đối xứng đường cong (C).
c)Viết phương trình tiếp tuyến của đường cong (C) tại điểm I đối với hện tọa độ Oxy. Chứng minh rằng trên khoảng (-∞;1) đường cong (C) nằm phía dưới tiếp tuyến tại I của (C) và trên khoảng (1; +∞) đường cong (C) nằm phía trên tiếp tuyến đó.
cho đường tròn tâm O đường kính AB. Trên tiếp tuyến của đường tròn (O) tại A lấy điểm M (M khác A). Từ M vẽ tiếp tuyến thứ hai MC với (O) (C là tiếp điểm). Kẻ CH vuông góc với AB (H thuộc AB), MB cắt (O) tại điểm thứ hai là K cắt CH tại N. CMR :
a) AKNH là tứ giác nt
b) AM.AM = MK.MB
c) Góc KAC bằng góc OMB
Chịu @- @
xét tứ giác AK NH có :
góc AKB bằng 90 độ g(óc nội tiếp chắn nửa đường tròn)
Góc AHN bằng 90° (AH vuông góc với hc)
Suy ra góc AKB + góc AHN bằng 180 độ
tự giác AHKN nt
Xét tam giác ABC có AK vuông góc với MB suy ra MA. MA=MK. MB
Gọi giao điểm của AC và OM là D phẩy giao điểm của m b với ac là i.
Xét tam giác AiK và tam giác MiD có
góc i là góc chung
Góc AKi=góc mdi(=90 độ)
Suy ra tam giác aik đồng dạng với tam giác min suy ra góc kac bằng goc 0mb
mình mới giải bài tập nhưng có một số ký hiệu không ghi được bằng bàn phím nên các bạn thông cảm
Sửa đề : I là trung điểm AO
O A B x y I M E F
a,Xét tứ giác AEIM có ^EAI + ^EMI = 90o
=> Tứ giác AEIM nội tiếp
Tương tự tứ giác MIBF nội tiếp
b,Vì tứ giác AEIM nội tiếp
=> ^MEI = ^MAI
Tương tự ^MFI = ^MBI
Vì M thuộc (O) đường kính AB
=> ^AMB = 90o
=> ^MAI + ^MBI = 90o
=> ^MEI + ^MFI = 90o
=> ^EIF = 90o
c, Xét \(\Delta\)AEI và \(\Delta\)BIF có
^EAI = ^FBI ( = 90o )
^AEI = ^BIF (Cùng phụ ^EIA)
\(\Rightarrow\Delta AEI\approx\Delta BIF\left(g.g\right)\)
=> AE . BF = AI . BI
Vì I là trung điểm AO
=> \(AI=\frac{AO}{2}=\frac{R}{2}\)
=> \(BI=AB-AI=2R-\frac{R}{2}=\frac{3R}{2}\)
\(\Rightarrow AE.BF=AI.BI=\frac{R}{2}.\frac{3R}{2}=\frac{3R^2}{4}\)
d,(Mấy cái lặt vặt tính cạnh theo R mình không làm nữa nhé , bạn tự hiểu nha)
Có \(S_{EIF}=S_{AEBF}-S_{AEI}-S_{BIF}\)
\(=\frac{\left(AE+BF\right).AB}{2}-\frac{AE.AI}{2}-\frac{BI.BF}{2}\)
\(=\frac{\left(AE+BF\right).2R}{2}-\frac{AE}{2}.\frac{R}{2}-\frac{BF}{2}.\frac{3R}{2}\)
\(=\left(AE+BF\right).R-\frac{AE.R}{4}-\frac{3BF.R}{4}\)
\(=AE.R-\frac{AE.R}{4}+BF.R-\frac{3BF.R}{4}\)
\(=\frac{3AE.R}{4}+\frac{BF.R}{4}\)
\(\ge2\sqrt{\frac{3AE.R.BF.R}{4.4}}\)
\(=2\sqrt{\frac{3R^2.AE.BF}{16}}\)
\(=2\sqrt{\frac{3R^2.\frac{3R^2}{4}}{16}}\)
\(=\frac{3R^2}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{3AE.R}{4}=\frac{BF.R}{4}\)
\(\Leftrightarrow3AE=BF\)
Thay vào \(AE.BF=\frac{3R^2}{4}\)
\(\Leftrightarrow AE.3AE=\frac{3R^2}{4}\)
\(\Leftrightarrow AE=\frac{R}{2}\)
\(\Leftrightarrow BF=\frac{3R}{2}\)
Vậy .,..........