Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABD có:
AD = AB (giả thiết)
=> Tam giác ABD là tam giác cân
=> Góc B = góc D (t/chất của tam giác cân)
Có: Q là tr/điểm AD
M là tr/điểm AB
=> QM // BD (t/chất đg tr/bình của tam giác)
=>Tứ giác QMBD là hình thang
Mà: Góc B = góc D (tam giác ABD là tam giác cân)
=> Hình thang QMBD là hình thang cân
P/s: Mình giải đến đây thôi. Mình thấy câu b "có j đó sai sai"?! Chẳng phải ở trên đã nói M là tr/điểm của AB rồi sao?! Sao ở câu b lại nói I là tr/điểm của AB?! Mình chưa giải câu c vì mik nghĩ đáp án câu b có thế sẽ là manh mối để giải câu c. Mình mong nếu bạn viết nhầm thì mau mau sửa lại để mik giải tiếp!!!! Thân.
a.Ta co
la duong trung binh cua tam giac ABD
=> MQ//BD, MQ= 0,5BD (1)
Ta lai co NP la dg trung binh cua tam giac BCD
=> NP//BD, NP=0,5 BD (2)
Tu (1) va (2)=> MNPQ la hinh binh hanh
Ta lai co QP=0,5 AC (vi la dg trung binh)
ma ABCD la hinh thang can => AC=BD=> MQ=QP
=>MNQP la hinh thoi
I K M N A B C D
Giải:
a) *) Có: MA = MD và NB = NC (gt)
=> MN là đường tb của hthang ABCD
=> MN // AB // CD
Có: MN // AB => KN // AB
Tam giác ABC có: KN // AB (cmt); NB = NC (gt)
=> KA = KC (đpcm)
Cm tương tự với tam giác ABD ta suy ra
IB = ID (đpcm)
b) Ta có: KN là đtb của \(\Delta ABC\) (KA = KC; NB = NC)
=> \(KN=\dfrac{1}{2}AB=\dfrac{1}{2}\cdot8=4\left(cm\right)\)
Tương tự có: \(IM=\dfrac{1}{2}AB=\dfrac{1}{2}\cdot8=4\left(cm\right)\)
Vì MN là đtb của hthang ABCD nên:
\(MN=\dfrac{AB+CD}{2}=\dfrac{8+14}{2}=11\)(cm)
Có: \(KN+IM+IK=MN\)
=> \(IK=MN-IM-KN=11-4-4=3\left(cm\right)\)
Vậy KN = IM = 4cm ; IK = 3cm
Lời giải:
Ta có \(P\) là trung điểm của $AB$, $N$ là trung điểm của $AC$ nên
\(AP=PB,AN=NC\Rightarrow \frac{AP}{PB}=\frac{AN}{NC}\)
Do đó theo định lý Tales suy ra \(PN\parallel BC\), mà \(AH\perp BC\Rightarrow PN\perp AH\) \((1)\)
Xét tam giác vuông tại $H$ là $AHB$ có $P$ là trung điểm của $AB$ nên $PA=PH$ . Tương tự, \(AN=NH\)$(2)$
Từ \((1),(2)\Rightarrow \) $PN$ là đường trung trực của $AH$
b) Do \(HM\parallel PN\Rightarrow HMNP\) là hình thang \((1)\)
Sử dụng tính chất so le trong và đồng vị với các đoạn \(PN\parallel BC, NM\parallel AB\) ta có:
\(\widehat{HPN}=\widehat{PHB}=90^0-\widehat{PHA}=90^0-\widehat{PAH}=\widehat{ABH}=\widehat{ABC}\)
\(\widehat{MNP}=\widehat{NMC}=\widehat{ABC}\)
Do đó \(\widehat{HPN}=\widehat{MNP}\) \((2)\)
Từ \((1),(2)\Rightarrow HMNP\) là hình thang cân.
B1 : Lấy N trung điểm AD ( thuộc AD ) => NA = ND = AD/2 = 5cm (1)
Hình thang ABCD có :
NA = ND ( cmt )
MB = MC ( gt )
=> NM là đg trung bình hình thang ABCD
=> NM = (AB + CD ) / 2 = 10 /2 = 5cm (2)
Xét tam giác AMD có : MN = 5cm ( 2)
mà MN = AD/2 (1)
=> tam giác AMD vuông ( đg trung tuyến ứng vs cạnh huyền = nửa cạnh huyền )
a: Xét hình thang ABCD có
E là trung điểm của AD
F là trung điểm của BC
Do đó: EF là đường trung bình
=>EF//AB//CD và EF=(AB+CD)/2
Xét ΔADC có
E là trung điểm của AD
EI//DC
Do đó: I là trung điểm của AC
b: \(EF=\dfrac{AB+CD}{2}=16\left(cm\right)\)
Xét ΔBDC có
F là trung điểm của BC
FK//DC
Do đó: K là trung điểm của BD
Ta có: EI là đường trung bình của ΔADC
nên EI=DC/2=10(cm)
Ta có: KF là đường trung bình của ΔBDC
nên KF=DC/2=10(cm)