K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

1. Vì MN//BC nên \(\widehat {AMN} = \widehat {ABC}\)( 2 góc đồng vị), mà \(\widehat {ABC} = 60^\circ \)nên \(\widehat {AMN} = 60^\circ \)

Vì \(\widehat {AMN} + \widehat {BMN} = 180^\circ \) (2 góc kề bù)

\(\begin{array}{l} \Rightarrow 60^\circ  + \widehat {BMN} = 180^\circ \\ \Rightarrow \widehat {BMN} = 180^\circ  - 60^\circ  = 120^\circ \end{array}\)

Vì \(\widehat {ANM} + \widehat {MNC} = 180^\circ \)(2 góc kề bù)

\(\begin{array}{l} \Rightarrow \widehat {ANM} + 150^\circ  = 180^\circ \\ \Rightarrow \widehat {ANM} = 180^\circ  - 150^\circ  = 30^\circ \end{array}\)

Vì MN//BC nên \(\widehat {ANM} = \widehat {ACB}\) ( 2 góc đồng vị), mà \(\widehat {ANM} = 30^\circ \)nên \(\widehat {ACB} = 30^\circ \).

2. Vì xx’//yy’ nên \(\widehat {x'AB} = \widehat {ABy}\)( 2 góc so le trong)

Mà zz’\( \bot \) xx’ nên \(\widehat {x'AB} = 90^\circ \)

Do đó, \(\widehat {ABy} = 90^\circ \) nên zz’ vuông góc với yy’.

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Tia BO là tia phân giác của \(\widehat {ABC}\) vì tia BO nằm giữa 2 tia BA và BC, tạo với 2 cạnh BA và BC 2 góc bằng nhau.

Tia DO là tia phân giác của \(\widehat {ADC}\) vì tia DO nằm giữa 2 tia DA và DC, tạo với 2 cạnh DA và DC 2 góc bằng nhau

b) Vì BO là tia phân giác của \(\widehat {ABC}\) nên \(\widehat {ABO} = \widehat {CBO} = \frac{1}{2}.\widehat {ABC} = \frac{1}{2}.100^\circ  = 50^\circ \)

Vì DO là tia phân giác của \(\widehat {ADC}\)nên \(\widehat {ADO} = \widehat {CDO} = \frac{1}{2}.\widehat {ADC} = \frac{1}{2}.60^\circ  = 30^\circ \)

Vậy \(\widehat {ABO} = 50^\circ ;\widehat {ADO} = 30^\circ \)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

2 góc kề bù trong hình là: góc mOt và tOn

Ta có:

\(\begin{array}{l}\widehat {mOt} + \widehat {tOn} = 180^\circ \\\widehat {mOt} = 180^\circ  - \widehat {tOn} = 180^\circ  - 60^\circ  = 120^\circ \end{array}\)

30 tháng 10 2023

a) Ta có:

∠mOx + ∠nOx = 180⁰ (kề bù)

⇒ ∠nOx = 180⁰ - ∠mOx

= 180⁰ - 30⁰

= 150⁰

Do Ot là tia phân giác của ∠nOx

⇒ ∠nOt = ∠nOx : 2 

= 150⁰ : 2

= 75⁰

b) Do a // b

⇒ ∠B₄ = ∠A₄ = 65⁰ (đồng vị)

Ta có:

∠B₃ + ∠B₄ = 180⁰ (kề bù)

⇒ ∠B₃ = 180⁰ - ∠B₄

= 180⁰ - 65⁰

= 115⁰

5 tháng 11 2023

Tính số đo góc �3^B3.

Hướng dẫn giải:

a) ���^+���^=180∘mOx+xOn=180

Vậy ���^=180∘−30∘=150∘nOx=18030=150.

��Ot là tia phân giác của ���^nOx, suy ra ���^=12.���^=75∘nOt=21.nOx=75.

b) a // b suy ra �4^=�2^=65∘A4=B2=65 (hai góc so le trong).

Mặt khác, ta có �2^+�3^=180∘B2+B3=180

Suy ra �3^=180∘−�2^=115∘B3=180B2=115.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét 2 tam giác ABC và MNP có:

AB=MN (gt)

\(\widehat {BAC} = \widehat {NMP}\) (gt)

AC=MP (gt)

Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)

18 tháng 9 2023

Em thấy bạn Vuông nói đúng

Để chứng minh điều này, ta có thể chỉ ra trường hợp 2 góc bằng nhau nhưng không đối đỉnh.

Ví dụ:

\(\widehat {{O_1}} = \widehat {{O_2}}\) nhưng hai góc này không đối đỉnh

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Đoạn thẳng đơn vị được chia thành 6 phần bằng nhau, lấy một đoạn làm đơn vị mới, đơn vị mới bằng \(\frac{1}{6}\) đơn vị cũ.

Điểm A nằm bên phải gốc O và cách O một đoạn bằng 10 đơn vị mới. Do đó điểm A biểu diễn số hữu tỉ \(\frac{{10}}{6} = \frac{5}{3}\)

Điểm B nằm bên trái gốc O và cách O một đoạn bằng 5 đơn vị mới. Do đó điểm B biểu diễn số hữu tỉ \(\frac{{ - 5}}{6}\)

Điểm C nằm bên trái gốc O và cách O một đoạn bằng 13 đơn vị mới. Do đó điểm C biểu diễn số hữu tỉ \(\frac{{ - 13}}{6}\)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Dãy đã cho là dãy số liệu.

=> Em ủng hộ bạn Tròn.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét tam giác MNP có:

\(\begin{array}{l}\widehat M + \widehat N + \widehat P = {180^o}\\ \Rightarrow \widehat M + {50^o} + {70^o} = {180^o}\\ \Rightarrow \widehat M = {60^o}\end{array}\)

Xét 2 tam giác ABC và MNP có:

AB=MN (gt)

\(\widehat {BAC} = \widehat {NMP} (=60^0)\)

AC=MP (gt)

Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét \(\Delta ABC\) và \(\Delta MNP\) có:

\(\begin{array}{l}AB = MN\\BC = NP\\AC = MP\end{array}\)

Vậy\(\Delta ABC\) =\(\Delta MNP\)(c.c.c)

Xét \(\Delta DEF\) và \(\Delta GHK\) có:

\(\begin{array}{l}DE = GH\\EF = HK\\DF = GK\end{array}\)

Vậy\(\Delta DEF\)=\(\Delta GHK\) (c.c.c)