K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2018

1. Ta có : a2 = b2 + c2 và b2 = 2c2 - 2013

\(\Leftrightarrow\)a2 - b2 - c2 = 0 và b2 - 2c2 = -2013

Do đó : M = 5a2 - 7b2 - c2 

= ( 5a2 - 5b2 - 5c2 ) = -2b2 + 4c2

= 5 . ( a2 - b2 - c2 ) - 2 . ( b2 - 2c2 )

= 0 - 2 . ( -2013 ) = 4026

27 tháng 7 2016

ta có a2=b2+c2=2c2-2013+c2=3c2-2013

ta có Q=5a2-7b2-c2=5(3c2-2013)-7(2c2-2013)-c2

                               =15c2-10065-14c2+14091-c2

                               =14091-10065

                               =4026

16 tháng 10 2016

Ta có : 

\(a^2=2c^2-2013+c^2\)

\(=3c^2-2013\)

\(\Rightarrow Q=5.\left(3c^2-2013\right)-7\left(2c^2-2013\right)-c^2\)

\(=15c^2-10065-14c^2+14091-c^2=4026\)

Vậy Q=4026

27 tháng 7 2016

Ta có

\(a^2=2c^2-2013+c^2=3c^2-2013\)

\(\Rightarrow Q=5\left(3c^2-2013\right)-7\left(2c^2-2013\right)-c^2=15c^2-10065-14c^2+14091-c^2=4026\)

27 tháng 7 2016

Thay b^2=2c^2-2013, ta co: a^2=2c^2-2013+c^2=3c^2-2013 => 5a^2=15c^2-10065

7b^2=7(2c^2-2013)=14c^2-14091

Suy ra Q=15c^2-10065-14c^2+14091-c^2=4026

8 tháng 9 2016

a . 

\(b^2\)= ac => \(\frac{a}{b}\)=\(\frac{b}{c}\)

c\(^2\)= bd => \(\frac{b}{c}=\frac{c}{d}\)

=>\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{a^3}{b^3}=\frac{c^3}{d^3}\)=\(\frac{\left(a^3+b^3+c^3\right)}{\left(b^3+c^3+d^3\right)}\)( theo \(\frac{t}{c}\)của dãy tỉ số = )

Mà \(\frac{a^3}{b^3}\)\(\frac{a}{b}\)x   \(\frac{a}{b}\).x   \(\frac{a}{b}\)  =   \(\frac{a}{b}\)    x\(\frac{b}{c}\)x\(\frac{c}{d}\)\(\frac{a}{d}\)

Nên \(\frac{\left(a^3+b^3+c^3\right)}{\left(b^3+c^3+d^3\right)}\)=\(\frac{a}{d}\)

8 tháng 9 2016

 x-y=2<=>x=y+2 
thay vào Q được: 
Q=(y+2)^2+y^2-(y+2)y 
=y^2+2y+4 
=(y+1)^2+3 
=>A>=3 
dấu bằng xảy ra <=>y= -1 và x=1 
vậy min Q=3

15 tháng 12 2016

Bài 1

a) \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + ... + \(\frac{1}{99.100}\)

= 1 - \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\) + ... + \(\frac{1}{99}\) - \(\frac{1}{100}\)

= 1 - \(\frac{1}{100}\)

= \(\frac{99}{100}\)

Còn những bài kia em không biết làm vì em mới học lớp 6.

Chúc anh/chị học tốt!

14 tháng 12 2016

Bài 1

a)\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

Bài 3:

b)\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

Ta thấy: \(\begin{cases}\left|2x-27\right|^{2011}\ge0\\\left(3y+10\right)^{2012}\ge0\end{cases}\)

\(\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\)

\(\Rightarrow\begin{cases}\left|2x-27\right|^{2011}=0\\\left(3y+10\right)^{2012}=0\end{cases}\)\(\Rightarrow\begin{cases}2x-27=0\\3y+10=0\end{cases}\)\(\Rightarrow\begin{cases}2x=27\\3y=-10\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}\)

13 tháng 6 2018

1.Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\) 

 Ta có :\(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

Vậy \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

2.a)   Từ 2a=5b=3c suy ra \(\frac{2a}{30}=\frac{5b}{30}=\frac{3c}{30}\Rightarrow\frac{a}{15}=\frac{b}{6}=\frac{c}{10}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{15}=\frac{b}{6}=\frac{c}{10}=\frac{a+b-c}{15+6-10}=\frac{-44}{11}=-4\)

Khi đó: \(\frac{a}{15}=-4\Rightarrow a=-4.15=-60\)

\(\frac{b}{6}=-4\Rightarrow b=-4.6=-24\)

\(\frac{c}{10}=-4\Rightarrow c=-40\)

Vậy a=-60;b=-24;c=-40

b) Từ 4x=5y suy ra\(\frac{x}{5}=\frac{y}{4}\)

Đặt \(\frac{x}{5}=\frac{y}{4}=k\)  suy ra x=5k;y=4k

Ta có : 5k.4k=80

           \(\Rightarrow20k^2=80\)

            \(\Rightarrow k^2=4\)

            \(\Rightarrow k=\pm2\)

Với k=2 thì x=5.2=10; y=4.2=8

Với k=-2 thì x=5-(-2)=-10; y=4.(-2)=-8

3. Ta có : |x-2011|+|x-200|=|-x+2022|+|x-200|

Áp dụng t/c của công thức |a|+|b|\(\ge\)|a+b| ta có

\(\left|-x+2011\right|+\left|x-200\right|\ge\left|-x+2011+x-200\right|=1811\)

Dấu "=" xảy ra khi và chỉ khi : (-x+2011)(x-200)\(\ge0\)

Suy ra : \(\orbr{\begin{cases}\hept{\begin{cases}-x+2011\ge0\\x-200\ge0\end{cases}}\\\hept{\begin{cases}-x+2011\le0\\x-200\le0\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x\le2011\\x\ge200\end{cases}}\\\hept{\begin{cases}x\ge2011\\x\le200\end{cases}}\end{cases}\Rightarrow}200\le x\le2011\frac{ }{ }\)

Vậy GTNN của A bằng 1811 khi và chỉ khi  \(200\le x\le2011\)

4.đề bài thiếu hả ?

13 tháng 6 2018

1/ Đặt :

\(\frac{a}{b}=\frac{c}{d}=k\) \(\Leftrightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\frac{ac}{bd}=\frac{bk.dk}{bd}=\frac{bd.k^2}{bd}=k^2\left(1\right)\)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2.k^2+d^2.k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

2/ \(2a=5b=3c\)

\(\Leftrightarrow\frac{2a}{30}=\frac{5b}{30}=\frac{3c}{30}\)

\(\Leftrightarrow\frac{a}{15}=\frac{b}{6}=\frac{c}{10}\)

Theo t/c dãy tỉ số bằng nhau ta có :

\(\frac{a}{15}=\frac{b}{6}=\frac{c}{10}=\frac{a+b-c}{15+6-10}=\frac{-44}{11}=-4\)

\(\Leftrightarrow\hept{\begin{cases}\frac{a}{15}=-4\\\frac{b}{6}=-4\\\frac{c}{10}=-4\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a=-60\\b=-24\\c=-40\end{cases}}\)

Vạy ...

b/ \(4x=5y\)

\(\Leftrightarrow\frac{x}{5}=\frac{y}{4}\)

Đặt : \(\frac{x}{5}=\frac{y}{4}=k\)\(\Leftrightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}}\)

Lại có : \(xy=80\)

\(\Leftrightarrow5k.4k=80\)

\(\Leftrightarrow20k=80\)

\(\Leftrightarrow k=4\)

\(\Leftrightarrow\hept{\begin{cases}x=5.4=20\\y=4.4=16\end{cases}}\)

Vậy ...