K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2020

1. \(M=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1\)

\(=\left[\left(a+1\right)\left(a+4\right)\right]\left[\left(a+2\right)\left(a+3\right)\right]+1\)

\(=\left(a^2+5a+4\right)\left(a^2+5a+6\right)+1\)

\(=\left(a^2+5a+4\right)^2+2\left(a^2+5a+4\right)+1\)

\(=\left(a^2+5a+5\right)^2\) 

=> Đpcm

25 tháng 8 2020

M = ( a + 1 )( a + 2 )( a + 3 )( a + 4 ) + 1

    = [ ( a + 1 )( a + 4 ) ][ ( a + 2 )( a + 3 ) ] + 1

    = [ a2 + 5a + 4 ][ a2 + 5a + 6 ] + 1

Đặt t = a2 + 5a + 4

M <=> t[ t + 2 ] + 1

      = t2 + 2t + 1

      = ( t + 1 )2

      = ( a2 + 5a + 4 + 1 )2 = ( a2 + 5a + 5 )2 ( đpcm )

( x2 + x + 1 )( x2 + x + 2 ) - 12 (*)

Đặt t = x2 + x + 1

(*) <=> t( t + 1 ) - 12

       = t2 + t - 12

       = t2 - 3t + 4t - 12

       = t( t - 3 ) + 4( t - 3 )

       = ( t - 3 )( t + 4 )

       = ( x2 + x + 1 - 3 )( x2 + x + 1 + 4 )

       = ( x2 + x - 2 )( x2 + x + 5 )

       = ( x2 + 2x - x - 2 )( x2 + x + 5 )

       = [ x( x + 2 ) - 1( x + 2 ) ]( x2 + x + 5 )

       = ( x + 2 )( x - 1 )( x2 + x + 5 )

20 tháng 8 2017

\(A=444....444=4.111.....111=4.\frac{10^{2n}-1}{9}\)

\(B=888.....888=8.111.....111=8.\frac{10^n-1}{9}\)

\(\Rightarrow A+2B+4=\frac{4.10^{2n}-4+16.10^n-16+36}{9}=\frac{4.10^{2n}+16.10^n+16}{9}=\left(\frac{2.10^n+4}{3}\right)^2\)

là số hính phương (đpcm)

20 tháng 8 2017

2) Ta có :

\(x^4+6x^2+25=x^4+10x^2+25-4x^2=\left(x^2+5\right)^2-\left(2x\right)^2\)

\(=\left(x^2-2x+5\right)\left(x^2+2x+5\right)\)(1)

\(3x^4+4x^2+28x+5=\left(3x^4+6x^3+x^2\right)+\left(-6x^3-12x^2-2x\right)+\left(15x^2+30x+5\right)\)

\(=x^2\left(3x^2+6x+1\right)-2x\left(3x^2+6x+1\right)+5\left(3x^2+6x+1\right)\)

\(=\left(x^2-2x+5\right)\left(3x^2+6x+1\right)\)(2)

Từ (1) ; (2) \(\Rightarrow f\left(x\right)=x^2-2x+5\Rightarrow f\left(2011\right)=2011^2-2.2011+5=4040104\)

20 tháng 4 2017

a.(x+1)(x+2)(x+3)(x+4)-24=[(x+1)(x+4)][(x+2)(x+3)]-24=(\(x^2+5x+4\))(\(x^2+5x+6\))-24  (1)

đặt \(x^2+5x+5=a\)ta có (1)=(a-1)(a+1)-24=\(a^2-25=\left(a-5\right)\left(a+5\right)\)

thay a=\(x^2+5x+5\)vào (1) ta có (1)=(\(x^2+5x\)+5-5)(\(x^2+5x\)+5+5)=x(x+5)(\(x^2\)+5x+10)

b.ta có :\(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}=\frac{2a+3a^2+a^3}{6}=\frac{a\left(a^2+3a+2\right)}{6}\)=\(\frac{a\left(a^2+2a+a+2\right)}{6}=\frac{a\left(a+1\right)\left(a+2\right)}{6}\).ta lại có a(a+1)(a+2) là tích 3 số nguyên liên tiếp luôn chia hết cho 6 suy ta điều cần cm

27 tháng 8 2017

 f(x) = x4 + 6x3 +11x+ 6x 

\(=x^4+x^3+5x^3+5x^2+6x^2+6x\)

\(=\left(x^4+x^3\right)+\left(5x^3+5x^2\right)+\left(6x^2+6x\right)\)

\(=x^3\left(x+1\right)+5x^2\left(x+1\right)+6x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3+5x^2+6x\right)\)

\(=x\left(x+1\right)\left(x^2+5x+6\right)\)

\(=x\left(x+1\right)\left[x^2+2x+3x+6\right]\)

\(=x\left(x+1\right)\left[\left(x^2+2x\right)+\left(3x+6\right)\right]\)

\(=x\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)

\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

27 tháng 8 2017

b)Ta có

\(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

\(=\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]+1\)

\(=\left(x^2+3x\right).\left(x^2 +3x+2\right)+1\)

\(=\left(x^2+3x+1-1\right).\left(x^2+3x+1+1\right)+1\)

\(=\left[\left(x^2+3x+1\right)-1\right].\left[\left(x^2+3x+1\right)+1\right]+1\)

\(=\left(x^2+3x+1\right)^2-1+1=\left(x^2+3x+1\right)^2\)

Vậy với mọi x nguyên thì f(x) + 1 luôn có giá trị là 1 số chính phương 

11 tháng 10 2021

\(x^3-9x^2+26x-24\)

\(=x^3-4x^2-5x^2+20x+6x-24\)

\(=\left(x-4\right)\left(x^2-5x+6\right)\)

\(=\left(x-4\right)\left(x-2\right)\left(x-3\right)\)

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x -...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????