K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

1, Ta có: \(\dfrac{2727}{2323}=\dfrac{27.101}{23.101}=\dfrac{27}{23}=\dfrac{27.1010101}{23.1010101}=\dfrac{27272727}{23232323}\)

2, \(3^{n+2}+2^{n+3}+3^n+2^{n+1}\)

\(=3^n.3^2+3^n+2^n.2^3+2^n.2\)

\(=3^n\left(3^2+1\right)+2^n\left(2^3+2\right)\)

\(=3^n.10+2^n.10=\left(3^n+2^n\right).10⋮10\forall n\in N\)

Vậy...

4 tháng 7 2017

1)\(\dfrac{27272727}{23232323}=\dfrac{2727.10001}{2323.10001}=\dfrac{2727}{2323}\)

2)

\(3^{n+2}+2^{n+3}+3^n+2^{n+1}\)

\(=3^n.3^2+2^n.2^3+3^n.1+2^n.2\)

\(=3^n.9+2^n.8+3^n.1+2^n.2\)

\(=3^n\left(9+1\right)+2^n\left(8+2\right)\)

\(=3^n.10+2^n.10\)

\(=10\left(3^n+2^n\right)⋮10\left(đpcm\right)\)

29 tháng 6 2018

n lớn hơn 2 và ko chia hết cho 3 nên n tồn tại dưới 2 dạng là 3k+1 hoặc 3k+2
Nếu n có dạng 3k + 2
n^2 + 1 = ( 3k + 2 )^2 + 1 = 9k^2 + 12k + 5
n^2 - 1 = 9k^2 + 12k + 3 chia hết cho 3
=> Ko thể đồng thời là số nguyên tố
Nếu n có dạng 3k + 1
n^2 + 1= ( 3k + 1 )^2 + 1 = 9k^2 + 6k + 2
n^2 - 1= ( 3k + 1 )^2 - 1 = 9k^2 + 6k chia hết cho 3
=> Ko thể đồng thời là số nguyên tố
Vậy với n thuộc N , n > 2 và ko chia hết cho 3 thì n^2 + 1 và n^2 - 1 ko thể đồng thời là số nguyên tố

29 tháng 6 2018

thanks

10 tháng 3 2017

a) Ta có: \(\dfrac{15}{x}=\dfrac{y}{7}\)

\(\Rightarrow xy=105\)

\(\Rightarrow x,y\inƯ\left(105\right)\)

mà Ư(105) \(=\left\{..........\right\}\)

\(\Rightarrow x,y\in\left\{.........\right\}\)

Vậy \(x,y\in\left\{........\right\}\)

b) Lại có: \(\dfrac{2}{x+4}=\dfrac{y-3}{6}\)

\(\Rightarrow\left(x+4\right)\left(y-3\right)=12\)

\(x,y\in Z\Rightarrow\left[{}\begin{matrix}x+4\in Z\\y-3\in Z\end{matrix}\right.\)

\(\Rightarrow x+4\inƯ\left(12\right);y-3\inƯ\left(12\right)\)

\(Ư\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

Từ đó tự lập bảng xét các giá trị \(x,y.\)

Vậy \(\left(x,y\right)\in\left\{\left(...,...\right);...\right\}\)

11 tháng 3 2017

1a)\(\dfrac{15}{x}=\dfrac{y}{7}\)

suy ra x.y=15.7

x.y=105

x.y \(thuộc\)Ư(105)=3;5;7

Vậy x;y =3;5;7

Bài 2: 

A=n(n+1)+1

Vì n;n+1 là hai số nguyên liên tiếp

nên n(n+1) chia hết cho 2

=>n(n+1)+1 không chia hết cho 2

hay A không chia hết cho 8

11 tháng 4 2017

Help me!!!khocroi

11 tháng 4 2017

Bài này giải ra dài lắm;

Gợi ý : với câu a) cm 1<A<2

với câ u b) 0<B<1

với câu c) áp dụng bài toán của ông gao í; cách tỉnh tổng từ 1->100 trong sách GK 6 có nhé

Mong bạn giải ra

20 tháng 7 2019

1) Ta có: \(10\equiv1\left(mod3\right)\Rightarrow10^n\equiv1\left(mod3\right)\Rightarrow10^n-1⋮3\)

Ta có: \(\left(10^n+1\right)\left(10^n+2\right)=\left(10^n+1\right)\left(10^n-1+3\right)\)

Do \(\hept{\begin{cases}10^n-1⋮3\\3⋮3\end{cases}}\Rightarrow\left(10^n+1\right)\left(10^n+2\right)⋮3\)

2) Ta có: Xét: \(1!+2!+3!+4!+5!+...+n!\)

Xét: \(n\ge5\) thì: \(1!+2!+3!+4!+5!+...+n!=33+5!+...+n!\)

Ta có: \(5!=1.2.3.4.5=\left(2.5\right).1.3.4\) có tận cùng bằng 0

Tương tự,ta suy ra được với n>=5 thì n! có tận cùng bằng 5 (do có chứa 2 thừa số 2 và 5)

\(\Rightarrow33+5!+...+n!\) tận cùng bằng 3 (loại vì scp ko có tận cùng bằng 3)

Như vậy, \(n< 5\)

Với \(n=1;1!+2!+3!+...+n!=1\left(TM\right)\)

Với \(n=2;1!+2!=5\left(KTM\right)\)

Với \(n=3;1!+2!+3!=9\left(TM\right)\)

Với \(n=4;1!+2!+3!+4!=33\left(KTM\right)\)

Vậy n bằng 1 hoặc 3

3) Ta có: \(a;b;c;d\in N\Rightarrow a+b+c+d>2\)

Giả sử \(a+b+c+d\) là số nguyên tố. Ta có: \(a+b+c+d=p\)(p nguyên tố) 

\(\Rightarrow a=p-b-c-d\Leftrightarrow ab=pb-b^2-bc-bd\)

\(\Leftrightarrow ab+b^2+bc+bd=pb\)

\(\Leftrightarrow cd+b^2+bc+bd=pb\Rightarrow\left(b+c\right)\left(b+d\right)=pb⋮p\)

Do p nguyên tố \(\Rightarrow\orbr{\begin{cases}b+c⋮p\\b+d⋮p\end{cases}}\Rightarrow\orbr{\begin{cases}b+c>p\\b+d>p\end{cases}}\Rightarrow\orbr{\begin{cases}b+c>a+b+c+d\\b+d>a+b+c+d\end{cases}}\left(vo-ly\right)\)

Vậy a+b+c+d là hợp số 

Ta xét hiệu: \(a^n+b^n+c^n+d^n-a-b-c-d⋮2\)(Fermat nhỏ)

\(\Rightarrow a^n+b^n+c^n+d^n⋮2;a^n+b^n+c^n+d^n>2\Rightarrow a^n+b^n+c^n+d^n\) là hợp số (đpcm) 

22 tháng 7 2019

Girl

Thank you =))

5 tháng 2 2018

a/ \(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)........\left(1-\dfrac{1}{a+1}\right)\)

\(=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\left(\dfrac{3}{3}-\dfrac{1}{3}\right).......\left(\dfrac{a+1}{a+1}-\dfrac{1}{a+1}\right)\)

\(=\dfrac{1}{2}.\dfrac{2}{3}.............\dfrac{a}{a+1}\)

\(=\dfrac{1}{a+1}\)

5 tháng 2 2018

Giúp với mình cần bài này gấp , bạn nào làm giúp mình , mình tick cho vui

25 tháng 7 2017

\(n\left(n+3\right)=n^2+3n\)

\(\left(n+2\right)\left(n+1\right)=n^2+3n+2\)

\(n^2+3n< n^2+3n+2\Rightarrow\dfrac{n}{n+1}< \dfrac{n+2}{n+3}\left(n\in N\right)\)

b) \(\dfrac{n}{2n+1}=\dfrac{3n}{6n+3}< \dfrac{3n+1}{6n+3}\)

c) \(\dfrac{10^8+2}{10^8-1}=1+\dfrac{1}{10^8-1}\)

\(\dfrac{10^8}{10^8-3}=\left(1+\dfrac{3}{10^8-3}\right)\)

\(\dfrac{1}{10^8-1}>\dfrac{3}{10^8-3}\Rightarrow\dfrac{10^8+2}{10^8-1}< \dfrac{10^8}{10^8-3}\)

25 tháng 7 2017

Làm dần dần và làm từ từ, suy ra được nhiều cách giải.

a) \(\dfrac{n}{n+1}\)\(\dfrac{n+2}{n+3}\)

+ Cách 1:

\(\dfrac{n}{n+1}=\dfrac{n+1-1}{n+1}=1-\dfrac{1}{n+1}\)

\(\dfrac{n+2}{n+3}=\dfrac{n+3-1}{n+3}=1-\dfrac{1}{n+3}\)

\(\dfrac{1}{n+1}>\dfrac{1}{n+3}\) nên \(1-\dfrac{n}{n+1}< 1-\dfrac{1}{n+3}\)

\(\Rightarrow\dfrac{n}{n+1}< \dfrac{n+2}{n+3}\)

+ Cách 2:

Ta so sánh: \(n\left(n+3\right)\)\(\left(n+1\right)\left(n+2\right)\)

\(n\left(n+3\right)=nn+3n=n^2+3n\)

\(\left(n+1\right)\left(n+2\right)=\left(n+1\right)n+\left(n+1\right).2=n^2+n+2n+2=n^2+3n+2\)

\(n^2+3n< n^2+3n+2\) nên \(\dfrac{n}{n+1}< \dfrac{n+2}{n+3}\)

b) \(\dfrac{n}{2n+1}\)\(\dfrac{3n+1}{6n+3}\)

Ta so sánh: \(n\left(6n+3\right)\)\(\left(2n+1\right)\left(3n+1\right)\)

\(n\left(6n+3\right)=n.6n+3n=6n^2+3n\)

\(\left(2n+1\right)\left(3n+1\right)=\left(2n+1\right)3n+\left(2n+1\right)=6n^2+3n+2n+1=6n^2+5n+1\)

\(6n^2+3n< 6n^2+5n+1\) nên \(\dfrac{n}{2n+1}< \dfrac{3n+1}{6n+3}\)

c) \(\dfrac{10^8+2}{10^8-1}\)\(\dfrac{10^8}{10^8-3}\)

\(\dfrac{10^8+2}{10^8-1}=\dfrac{10^8-1+3}{10^8-1}=1+\dfrac{3}{10^8-1}\)

\(\dfrac{10^8}{10^8-3}=\dfrac{10^8-3+3}{10^8-3}=1+\dfrac{3}{10^8-3}\)

\(\dfrac{3}{10^8-1}>\dfrac{3}{10^8-3}\) nên \(\dfrac{10^8+2}{10^8-1}>\dfrac{10^8}{10^8-3}\)

d) \(\dfrac{3^{17}+1}{3^{20}+1}\)\(\dfrac{3^{20}+1}{3^{23}+1}\)

(đang tìm cách làm, và thêm vài cách khác)