Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n lớn hơn 2 và ko chia hết cho 3 nên n tồn tại dưới 2 dạng là 3k+1 hoặc 3k+2
Nếu n có dạng 3k + 2
n^2 + 1 = ( 3k + 2 )^2 + 1 = 9k^2 + 12k + 5
n^2 - 1 = 9k^2 + 12k + 3 chia hết cho 3
=> Ko thể đồng thời là số nguyên tố
Nếu n có dạng 3k + 1
n^2 + 1= ( 3k + 1 )^2 + 1 = 9k^2 + 6k + 2
n^2 - 1= ( 3k + 1 )^2 - 1 = 9k^2 + 6k chia hết cho 3
=> Ko thể đồng thời là số nguyên tố
Vậy với n thuộc N , n > 2 và ko chia hết cho 3 thì n^2 + 1 và n^2 - 1 ko thể đồng thời là số nguyên tố
a) Ta có: \(\dfrac{15}{x}=\dfrac{y}{7}\)
\(\Rightarrow xy=105\)
\(\Rightarrow x,y\inƯ\left(105\right)\)
mà Ư(105) \(=\left\{..........\right\}\)
\(\Rightarrow x,y\in\left\{.........\right\}\)
Vậy \(x,y\in\left\{........\right\}\)
b) Lại có: \(\dfrac{2}{x+4}=\dfrac{y-3}{6}\)
\(\Rightarrow\left(x+4\right)\left(y-3\right)=12\)
Vì \(x,y\in Z\Rightarrow\left[{}\begin{matrix}x+4\in Z\\y-3\in Z\end{matrix}\right.\)
\(\Rightarrow x+4\inƯ\left(12\right);y-3\inƯ\left(12\right)\)
mà \(Ư\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Từ đó tự lập bảng xét các giá trị \(x,y.\)
Vậy \(\left(x,y\right)\in\left\{\left(...,...\right);...\right\}\)
1a)\(\dfrac{15}{x}=\dfrac{y}{7}\)
suy ra x.y=15.7
x.y=105
x.y \(thuộc\)Ư(105)=3;5;7
Vậy x;y =3;5;7
Bài 2:
A=n(n+1)+1
Vì n;n+1 là hai số nguyên liên tiếp
nên n(n+1) chia hết cho 2
=>n(n+1)+1 không chia hết cho 2
hay A không chia hết cho 8
Bài này giải ra dài lắm;
Gợi ý : với câu a) cm 1<A<2
với câ u b) 0<B<1
với câu c) áp dụng bài toán của ông gao í; cách tỉnh tổng từ 1->100 trong sách GK 6 có nhé
Mong bạn giải ra
1) Ta có: \(10\equiv1\left(mod3\right)\Rightarrow10^n\equiv1\left(mod3\right)\Rightarrow10^n-1⋮3\)
Ta có: \(\left(10^n+1\right)\left(10^n+2\right)=\left(10^n+1\right)\left(10^n-1+3\right)\)
Do \(\hept{\begin{cases}10^n-1⋮3\\3⋮3\end{cases}}\Rightarrow\left(10^n+1\right)\left(10^n+2\right)⋮3\)
2) Ta có: Xét: \(1!+2!+3!+4!+5!+...+n!\)
Xét: \(n\ge5\) thì: \(1!+2!+3!+4!+5!+...+n!=33+5!+...+n!\)
Ta có: \(5!=1.2.3.4.5=\left(2.5\right).1.3.4\) có tận cùng bằng 0
Tương tự,ta suy ra được với n>=5 thì n! có tận cùng bằng 5 (do có chứa 2 thừa số 2 và 5)
\(\Rightarrow33+5!+...+n!\) tận cùng bằng 3 (loại vì scp ko có tận cùng bằng 3)
Như vậy, \(n< 5\)
Với \(n=1;1!+2!+3!+...+n!=1\left(TM\right)\)
Với \(n=2;1!+2!=5\left(KTM\right)\)
Với \(n=3;1!+2!+3!=9\left(TM\right)\)
Với \(n=4;1!+2!+3!+4!=33\left(KTM\right)\)
Vậy n bằng 1 hoặc 3
3) Ta có: \(a;b;c;d\in N\Rightarrow a+b+c+d>2\)
Giả sử \(a+b+c+d\) là số nguyên tố. Ta có: \(a+b+c+d=p\)(p nguyên tố)
\(\Rightarrow a=p-b-c-d\Leftrightarrow ab=pb-b^2-bc-bd\)
\(\Leftrightarrow ab+b^2+bc+bd=pb\)
\(\Leftrightarrow cd+b^2+bc+bd=pb\Rightarrow\left(b+c\right)\left(b+d\right)=pb⋮p\)
Do p nguyên tố \(\Rightarrow\orbr{\begin{cases}b+c⋮p\\b+d⋮p\end{cases}}\Rightarrow\orbr{\begin{cases}b+c>p\\b+d>p\end{cases}}\Rightarrow\orbr{\begin{cases}b+c>a+b+c+d\\b+d>a+b+c+d\end{cases}}\left(vo-ly\right)\)
Vậy a+b+c+d là hợp số
Ta xét hiệu: \(a^n+b^n+c^n+d^n-a-b-c-d⋮2\)(Fermat nhỏ)
\(\Rightarrow a^n+b^n+c^n+d^n⋮2;a^n+b^n+c^n+d^n>2\Rightarrow a^n+b^n+c^n+d^n\) là hợp số (đpcm)
a/ \(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)........\left(1-\dfrac{1}{a+1}\right)\)
\(=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\left(\dfrac{3}{3}-\dfrac{1}{3}\right).......\left(\dfrac{a+1}{a+1}-\dfrac{1}{a+1}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}.............\dfrac{a}{a+1}\)
\(=\dfrac{1}{a+1}\)
Giúp với mình cần bài này gấp , bạn nào làm giúp mình , mình tick cho
\(n\left(n+3\right)=n^2+3n\)
\(\left(n+2\right)\left(n+1\right)=n^2+3n+2\)
Vì \(n^2+3n< n^2+3n+2\Rightarrow\dfrac{n}{n+1}< \dfrac{n+2}{n+3}\left(n\in N\right)\)
b) \(\dfrac{n}{2n+1}=\dfrac{3n}{6n+3}< \dfrac{3n+1}{6n+3}\)
c) \(\dfrac{10^8+2}{10^8-1}=1+\dfrac{1}{10^8-1}\)
\(\dfrac{10^8}{10^8-3}=\left(1+\dfrac{3}{10^8-3}\right)\)
Vì \(\dfrac{1}{10^8-1}>\dfrac{3}{10^8-3}\Rightarrow\dfrac{10^8+2}{10^8-1}< \dfrac{10^8}{10^8-3}\)
Làm dần dần và làm từ từ, suy ra được nhiều cách giải.
a) \(\dfrac{n}{n+1}\) và \(\dfrac{n+2}{n+3}\)
+ Cách 1:
\(\dfrac{n}{n+1}=\dfrac{n+1-1}{n+1}=1-\dfrac{1}{n+1}\)
\(\dfrac{n+2}{n+3}=\dfrac{n+3-1}{n+3}=1-\dfrac{1}{n+3}\)
Vì \(\dfrac{1}{n+1}>\dfrac{1}{n+3}\) nên \(1-\dfrac{n}{n+1}< 1-\dfrac{1}{n+3}\)
\(\Rightarrow\dfrac{n}{n+1}< \dfrac{n+2}{n+3}\)
+ Cách 2:
Ta so sánh: \(n\left(n+3\right)\) và \(\left(n+1\right)\left(n+2\right)\)
\(n\left(n+3\right)=nn+3n=n^2+3n\)
\(\left(n+1\right)\left(n+2\right)=\left(n+1\right)n+\left(n+1\right).2=n^2+n+2n+2=n^2+3n+2\)
Vì \(n^2+3n< n^2+3n+2\) nên \(\dfrac{n}{n+1}< \dfrac{n+2}{n+3}\)
b) \(\dfrac{n}{2n+1}\) và \(\dfrac{3n+1}{6n+3}\)
Ta so sánh: \(n\left(6n+3\right)\) và \(\left(2n+1\right)\left(3n+1\right)\)
\(n\left(6n+3\right)=n.6n+3n=6n^2+3n\)
\(\left(2n+1\right)\left(3n+1\right)=\left(2n+1\right)3n+\left(2n+1\right)=6n^2+3n+2n+1=6n^2+5n+1\)
Vì \(6n^2+3n< 6n^2+5n+1\) nên \(\dfrac{n}{2n+1}< \dfrac{3n+1}{6n+3}\)
c) \(\dfrac{10^8+2}{10^8-1}\) và \(\dfrac{10^8}{10^8-3}\)
\(\dfrac{10^8+2}{10^8-1}=\dfrac{10^8-1+3}{10^8-1}=1+\dfrac{3}{10^8-1}\)
\(\dfrac{10^8}{10^8-3}=\dfrac{10^8-3+3}{10^8-3}=1+\dfrac{3}{10^8-3}\)
Vì \(\dfrac{3}{10^8-1}>\dfrac{3}{10^8-3}\) nên \(\dfrac{10^8+2}{10^8-1}>\dfrac{10^8}{10^8-3}\)
d) \(\dfrac{3^{17}+1}{3^{20}+1}\) và \(\dfrac{3^{20}+1}{3^{23}+1}\)
(đang tìm cách làm, và thêm vài cách khác)
1, Ta có: \(\dfrac{2727}{2323}=\dfrac{27.101}{23.101}=\dfrac{27}{23}=\dfrac{27.1010101}{23.1010101}=\dfrac{27272727}{23232323}\)
2, \(3^{n+2}+2^{n+3}+3^n+2^{n+1}\)
\(=3^n.3^2+3^n+2^n.2^3+2^n.2\)
\(=3^n\left(3^2+1\right)+2^n\left(2^3+2\right)\)
\(=3^n.10+2^n.10=\left(3^n+2^n\right).10⋮10\forall n\in N\)
Vậy...
1)\(\dfrac{27272727}{23232323}=\dfrac{2727.10001}{2323.10001}=\dfrac{2727}{2323}\)
2)
\(3^{n+2}+2^{n+3}+3^n+2^{n+1}\)
\(=3^n.3^2+2^n.2^3+3^n.1+2^n.2\)
\(=3^n.9+2^n.8+3^n.1+2^n.2\)
\(=3^n\left(9+1\right)+2^n\left(8+2\right)\)
\(=3^n.10+2^n.10\)
\(=10\left(3^n+2^n\right)⋮10\left(đpcm\right)\)