K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2019

\(a,6,7\%+5,96\%=0,067+0,0596=0,1266\)

\(b,96,8\%-54,9\%+4,5\%=0,986-0,549+0,045=0,482\)

\(c,9\times8,7\%=9\times0,087=0,783\)

\(d,96,5\%:5=0,965:5=0,193\)

18 tháng 4 2019

A. 12.66 %

B. 46.4 %

C. 78.3 %

D . 19.3 %

7 tháng 6 2018

làm dài lắm,nếu muốn thì k minh còn ko thì thôi

7 tháng 6 2018

a,0,36.350+1,2.20.3+9.4.4,5

=13.3.35+12.2.3+9.2.3.3

=3.(13.35+12.2+.9.2.3)

=3.(455+24+54)

=3.533

=1599

b,2015.2016-5/2015.2015+2010

=4062240-5+2010

=4064245

c,2/1.3+2/3.5+2/5.7+...+2/71.73

=1-1/3+1/3-1/5+1/5-1/7+...+1/71-1/73

=1-1/73

=72/73

d,(1+1/2).(1+1/3)+...+(1+1/2018)

=3/2.4/3.5/4+...+2019/2018

=2019/2

e,E=1/4.5+1/5.6+1/6.7+...+1/80.81(làm tương tự với phần d nên mình làm ngắn

     =1/4-1/81

     =77/324

f,F=3/2.3+3/3.4+...+3/99.100

=3.(1/2.3+1/3.4+...+1/99.100)(làm tương tự với d

=3.(1/2-1/100)

=3.49/100

=147/100

gG=5/1.4+5/4.7+...+5/61.64

3G=5.(3/1.4+3./4.7+...+3/61.64)

     =5.(1-1/64)

     =5.63/64

     =315/64

ok nha bạn,mình giữ đúng lời hứa.

17 tháng 9 2016

bài này là tính hả bạn ??

13 tháng 8 2016

a)=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{49}{100}\)

b)\(=\frac{201.204+1}{\left(201+2\right).204-407}\)

\(=\frac{201.204+1}{201.204+2.204-407}\)

\(=\frac{201.204+1}{201.204+1}\)

=1

13 tháng 8 2016

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

8 tháng 6 2018

\(D=\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)...+\left(1+\frac{1}{2018}\right)\)

     \(=\frac{3}{2}.\frac{4}{3}......\frac{2018}{2017}.\frac{2019}{2018}\)

      \(=\frac{3.4.5....2018.2019}{2.3.4.5....2017.2018}=\frac{2019}{2}\)

\(E=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{79.80}+\frac{1}{80.81}\)

      \(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{80}-\frac{1}{81}\)

        \(=\frac{1}{4}-\frac{1}{81}\)

          \(=\frac{77}{324}\)

8 tháng 6 2018

\(\text{D}=\left(1+\frac{1}{2}\right)\cdot\left(1+\frac{1}{3}\right)\cdot...\cdot\left(1+\frac{1}{2017}\right)\cdot\left(1+\frac{1}{2018}\right)\)

\(\text{D}=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{2018}{2017}\cdot\frac{2019}{2018}\)

\(\text{D}=\frac{2019}{2}\)

\(\text{E}=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{79.80}+\frac{1}{80.81}\)

\(\text{E}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{79}-\frac{1}{80}+\frac{1}{80}-\frac{1}{81}\)

\(\text{E}=\frac{1}{4}-\frac{1}{81}=\frac{81}{324}-\frac{4}{324}=\frac{77}{324}\)

20 tháng 6 2015

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{200.201}\)

=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{200}-\frac{1}{201}\)

=\(\frac{1}{2}-\frac{1}{201}\)

=\(\frac{199}{402}\)

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{200.201}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{200}-\frac{1}{201}\)

\(=\frac{1}{2}-\frac{1}{201}=\frac{199}{402}\)

12 tháng 7 2018

\(A=1.2+2.3+3.4+4.5+...+59.60\)

\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+...+59.60.\left(61-58\right)\)

\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+...+59.60.61-58.59.60\)

\(\Rightarrow3A=59.60.61\)

\(\Rightarrow A=\frac{59.60.61}{3}\)

7 tháng 6 2016

a) 1/5.6 + 1/6.7 + 1/7.8 + ... + 1/24.25

= 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + ... + 1/24 - 1/25

= 1/5 - 1/25

= 4/25

b) 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101

= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/99 -1/101

= 1 - 1/101

= 100/101

c) 3/1.4 + 3/4.7 + ... + 3/2002.2005

= 1 - 1/4 + 1/4 - 1/7 + ... + 1/2002 - 1/2005

= 1 - 1/2005

= 2004/2005

d) 5/2.7 + 5/7.12 + ... + 5/1997.2002

= 1/2 - 1/7 + 1/7 - 1/12 + ... + 1/1997 - 1/2002

= 1/2 - 1/2002

= 500/1001

7 tháng 6 2016

a,A =  \(\frac{1}{5\times6}+\frac{1}{6\times7}+\frac{1}{7\times8}+...+\frac{1}{24\times25}\)

A\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)

A\(=\frac{1}{5}-\frac{1}{25}=\frac{5}{25}-\frac{1}{25}=\frac{4}{25}\)

b, B=\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{99\times101}\)

B= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

B=\(1-\frac{1}{101}=\frac{100}{101}\)

c, \(C=\frac{3}{1\times4}+\frac{3}{4\times7}+...+\frac{3}{2002\times2005}\)

C= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{2002}-\frac{1}{2005}\)

C= \(1-\frac{1}{2005}=\frac{2004}{2005}\)

d, D= \(\frac{5}{2\times7}+\frac{5}{7\times12}+...+\frac{5}{1997\times2002}\)

D= \(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+...+\frac{1}{1997}-\frac{1}{2002}\)

D= \(\frac{1}{2}-\frac{1}{2002}=\frac{1001}{2002}-\frac{1}{2002}=\frac{1000}{2002}=\frac{500}{1001}\)