Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a) 625/5n=53 => 5n=625/53=54/53=5 =>n=1
b) (-2n)/-128=4 =>-2n=4.(-128)=-2.256 =>n=256
c) (3/7)n=81/2401=(3/7)4 => n=4
2. 32<2n<512
<=> 25<2n<29
=> n=6;7;8
3. (x-1)4=16=24 => x-1=2 =>x=3
a) Ta có :
\(\left(8x-1\right)^{2n+1}=7^{2n+1}\)
\(\Leftrightarrow8x-1=7\)
\(\Leftrightarrow8x=8\)
\(\Leftrightarrow x=1\left(tm\right)\)
Vạy ..........
2) \(5^x.\left(5^3\right)^2=625\)
\(\Leftrightarrow5^x.5^6=625\)
\(\Leftrightarrow5^{x+6}=5^4\)
\(\Leftrightarrow x+6=4\)
\(\Leftrightarrow x=-2\left(tm\right)\)
Vậy ...............
3) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\Leftrightarrow\left(x-7\right)^{x+1}.\left[1-\left(x-7\right)^{10}\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\\left[{}\begin{matrix}x-7=1\\x-7=-1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\\left[{}\begin{matrix}x=8\\x=6\end{matrix}\right.\end{matrix}\right.\)
Vậy ..
a, \(27< 3^x< 3\cdot81\)
=> \(3^3< 3^x< 3\cdot3^4\)
=> \(3^3< 3^x< 3^5\)
=> x = 4
b, \(4^{15}\cdot9^{15}< 2^x\cdot3^x< 18^{16}\cdot216\)
=> \(\left[2^2\right]^{15}\cdot\left[3^2\right]^{15}< 2^x\cdot3^x< \left[2\cdot3^2\right]^{16}\cdot6^3\)
=> \(2^{30}\cdot3^{30}< 2^x\cdot3^x< 2^{16}\cdot3^{32}\cdot2^3\cdot3^3\)
=> \(2^{30}\cdot3^{30}< 2^x\cdot3^x< 2^{19}\cdot3^{35}\)
Đến đây tìm được x
\(c,2^{x+1}\cdot3^y=2^{2x}\cdot3^x\Leftrightarrow\frac{2^{2x}}{2^{x+1}}=\frac{3^y}{3^x}\Leftrightarrow2^{x-1}=3^{y-x}\)
\(\Leftrightarrow x-1=y-x=0\Leftrightarrow x=1\)
\(d,6^x:2^{2000}=3^y\)
=> \(\frac{6^x}{3^y}=2^{2000}\)
=> \(\frac{3^{2x}}{3^y}=2^{2000}\)
=> \(3^{2x-y}=2^{2000}\)
Đến đây tìm thử x,y
\(\frac{625}{5^n}=5^3\)
\(\Leftrightarrow5^3\cdot5^n=625\)
\(\Leftrightarrow5^{3+n}=625\)
\(\Leftrightarrow5^{3+n}=5^4\)
\(\Leftrightarrow3+n=4\Leftrightarrow n=1\)
\(32< 2^x< 512\)
\(\Leftrightarrow2^5< 2^x< 2^9\)
\(\Leftrightarrow5< x< 9\)
\(\Leftrightarrow x\in\left\{6;7;8\right\}\)