K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2016

a) (2x+1)^2+2(4x^2-2)+(2x-1)^2=4x2+4x+1+8x2-4+4x2-4x+1=16x2-2

15 tháng 3 2020

a) 3x-2/3 - 2 = 4x+1/4

<=>3x-8/3=4x+1/4

<=>3x-8/3-4x-1/4=0

<=>-x-29/12=0

<=>-x=29/12

<=>x=-29/12

Vậy x=-29/12

b) x-3/4 + 2x-1/3 = 2-x/6

<=>3x-13/12=2-x/6

<=>3x-13/12-2+x.1/6=0

<=> 19/6x-37/12=0

<=>19/6x=37/12

<=>x=37/38

Vậy x=37/38

17 tháng 8 2020

a, \(12-2\left(1-x\right)^2=\left(3x-2\right)\left(2x-3\right)\)

\(< =>12-2\left(1-2x+x^2\right)=6x^2-9x-4x+6\)

\(< =>12-2+4x-2x^2=6x^2-13x+6\)

\(< =>10+4x-2x^2-6x^2+13x-6=0\)

\(< =>-8x^2+17x+4=0< =>\orbr{\begin{cases}x=\frac{17-\sqrt{417}}{16}\\x=\frac{17+\sqrt{417}}{16}\end{cases}}\)

b, \(10x+3-5x=4x+12< =>5x+3-4x-12=0\)

\(< =>x-9=0< =>x=9\)

c, \(11x+42-2x=100-9x-22< =>9x+42-100+9x+22=0\)

\(< =>18x+64-100=0< =>18x-36=0< =>x=\frac{36}{18}=2\)

d, \(2x-\left(3-5x\right)=4\left(x+3\right)< =>2x-3+5x=4x+12\)

\(< =>7x-3-4x-12=0< =>3x-15=0< =>x=\frac{15}{3}=5\)

e, \(2\left(x-3\right)+5x\left(x-1\right)=5x^2< =>2x-6+5x^2-5=5x^2\)

\(< =>2x-11+5x^2-5x^2=0< =>2x-11=0< =>x=\frac{11}{2}\)

f, \(-6\left(1,5-2x\right)=3\left(-15+2x\right)< =>-6\left(\frac{3}{2}-2x\right)=3\left(2x-15\right)\)

\(< =>-9+12x-6x+45=0< =>6x+36=0< =>x=-6\)

g, \(14x-\left(2x+7\right)=3x+12x-13< =>14x-2x-7=15x-13\)

\(< =>12x-7-15x+13=0< =>-3x+6=0< =>x=-2\)

h, \(\left(x-4\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)

\(< =>x^2-16-6x+4=x^2-8x+16\)

\(< =>x^2-6x-12-x^2+8x-16=0\)

\(< =>2x-28=0< =>x=\frac{28}{2}=14\)

q, \(4\left(x-2\right)-\left(x-3\right)\left(2x-5\right)=?\)thiếu đề

11 tháng 9 2019

\(\left(-3x-2\right)^2+\left(3x+5\right)\left(5-3x\right)=-7\)

\(\Leftrightarrow9x^2+12x+4+15x-9x^2+25-15x=-7\)

\(\Leftrightarrow12x+36=0\Leftrightarrow x=-3\)

11 tháng 9 2019

\(\left(x+2\right)\left(x^2+2x+2\right)-x\left(x-8\right)^2=\left(4x-3\right)\left(4x+3\right)\)

\(\Leftrightarrow x^3+2x^2+2x+2x^2+4x+4-x\left(x^2-16x+64\right)=16x^2-9\)

\(\Leftrightarrow x^3+4x^2+6x+4-x^3+16x^2-64=16x^2-9\)

\(\Leftrightarrow4x^2+6x-51=0\)

\(\cdot\Delta=6^2-4.4.\left(-51\right)=852\)

Vậy pt có 2 nghiệm phân biệt

\(x_1=\frac{-6+\sqrt{852}}{8}\);\(x_2=\frac{-6-\sqrt{852}}{8}\)

21 tháng 6 2017

B =  x2 + 4x + 6
   = (x2 + 4x + 4) + 2
   = (x + 2)2 + 2 > 0

D =  x2 + x + 1
   = (x2 + 2x\(\frac{1}{2}\)+\(\frac{1}{4}\)) + \(\frac{3}{4}\)
   = (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)> 0

F =  2x2 + 4x + 3
   = (2x2 + 4x + 2) + 1
   = (\(\sqrt{2x}+\sqrt{2}\))2 + 1 > 0

H =  4x2 + 4x + 2
   = (4x2 + 4x + 1) + 1
   = (2x + 1)2 + 1 > 0

K =  4x2 + 3x + 2
   = (4x2 + 2.2.\(\frac{3}{4}\)x + \(\frac{9}{16}\)) + \(\frac{23}{16}\)
   = (2x + \(\frac{3}{4}\))2 + \(\frac{23}{16}\)> 0

L =  2x2 + 3x + 4
   = (x2 + 2x\(\frac{3}{2}\) + \(\frac{9}{4}\)) + x2 + \(\frac{7}{4}\)
   = (x + \(\frac{3}{2}\))2 + x2 + \(\frac{7}{4}\)> 0

Vậy các biểu thức trên luôn dương với mọi x

21 tháng 6 2017

\(B=x^2+2x+1+5=\left(x+1\right)^2+5>0\)

\(H=4x^2+4x+1+1=\left(2x+1\right)^2+1>0\)

Các đa thức còn lại đều có delta < 0 và hệ số a >0 nên luôn dương với mọi x