Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) \(x.0,\left(2\right)+0,\left(3\right)=0,\left(77\right)\)
⇔ \(x.2.0,\left(1\right)+3.0,\left(1\right)=77.0,\left(01\right)\)
⇔ \(2x.\dfrac{1}{9}+3.\dfrac{1}{9}=77.\dfrac{1}{99}\)
⇔ \(2x.\dfrac{1}{9}+\dfrac{1}{3}=\dfrac{7}{9}\)
⇔ \(2x.\dfrac{1}{9}=\dfrac{7}{9}-\dfrac{1}{3}=\dfrac{4}{9}\)
⇔ \(2x=\dfrac{4}{9}:\dfrac{1}{9}=4\)
⇔ \(x=4:2=2\)
Vậy \(x=2\)
\(b,\) \(0,\left(153\right):0,\left(123\right)=1\dfrac{10}{41}.x\)
⇔ \(153.0,\left(001\right):\left[123.0,\left(001\right)\right]=\dfrac{51}{41}.x\)
⇔ \(153.\dfrac{1}{999}:\left(123.\dfrac{1}{999}\right)=\dfrac{51}{41}.x\)
⇔ \(\dfrac{17}{111}:\dfrac{41}{333}=\dfrac{51}{41}.x\)
⇔ \(\dfrac{51}{41}=\dfrac{51}{41}x\)
⇔ \(x=\dfrac{51}{41}:\dfrac{51}{41}=1\)
Vậy \(x=1\)
a)x.0,(2)+0,(3)=0,(77)
x.0,(2)=0,(77)-0,(3)
x.0,(2)=0,47
x=0,47:0,(2)
x=0,77
b) 0,(153):0,(123)=1/10/41.x
1,24390=1/10/41.x
x=1/10/41:1,24390
x=1
\(\frac{x+1}{125}+\frac{x+2}{124}+\frac{x+3}{123}+\frac{x+4}{122}+\frac{x+146}{5}=0\)
\(\left(\frac{x+1}{125}+1\right)+\left(\frac{x+2}{124}+1\right)+\left(\frac{x+3}{123}+1\right)+\left(\frac{x+4}{122}+1\right)+\left(\frac{x+146}{5}-4\right)=0\)
\(\frac{x+126}{125}+\frac{x+126}{124}+\frac{x+126}{123}+\frac{x+126}{122}+\frac{x+126}{5}=0\)
\(\left(x+126\right).\left(\frac{1}{125}+\frac{1}{124}+\frac{1}{123}+\frac{1}{122}+\frac{1}{5}\right)=0\)
vì \(\left(\frac{1}{125}+\frac{1}{124}+\frac{1}{123}+\frac{1}{122}+\frac{1}{5}\right)\ne0\)nên x + 126 = 0 \(\Rightarrow\)x = -126
a) \(\left(\frac{1}{7}x-\frac{2}{7}\right)\cdot\left(-\frac{1}{5}x+\frac{3}{5}\right)\cdot\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
\(\Rightarrow\)TH1 : \(\frac{1}{7}x-\frac{2}{7}=0\) TH2 : \(-\frac{1}{5}x+\frac{3}{5}=0\) TH3 : \(\frac{1}{3}x+\frac{4}{3}=0\)
\(\frac{1}{7}x=\frac{2}{7}\) \(-\frac{1}{5}x=\frac{3}{5}\) \(\frac{1}{3}x=\frac{4}{3}\)
\(x=\frac{2}{7}\cdot7\) \(x=\frac{3}{5}\cdot-5\) \(x=\frac{4}{3}\cdot3\)
\(x=2\) \(x=-3\) \(x=4\)
Vậy x = 2 hoặc x = -3 hoặc x = 4
b) \(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{5}x+1=0\)
\(x\cdot\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{5}\right)=1\)
\(x\cdot\frac{5+3-24}{30}=1\)
\(x\cdot\frac{-8}{15}=1\)
\(x=1\cdot\frac{-15}{8}=\frac{-15}{8}\)
Vậy x = \(\frac{-15}{8}\)
a, x = 0 ; y = 1/10
b, x = 10 ; y = 1/2 hoặc y = -1/2
k mk nha
1, \(x^2+\left(y-\frac{1}{10}\right)^4=0\) (1)
Ta thấy \(x^2\ge0;\left(y-\frac{1}{10}\right)^4\ge0\)với mọi x,y nên \(x^2+\left(y-\frac{1}{10}\right)^4\ge0\)với mọi x,y (2)
Từ (1) và (2) suy ra
\(\hept{\begin{cases}x^2=0\\y-\frac{1}{10}=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=\frac{1}{10}\end{cases}}}\)
2, \(\left(\frac{1}{2}x-5\right)^{20^2}+\left(y^2-\frac{1}{4}\right)^{10}\le0\) (1)
Ta thấy \(\left(\frac{1}{2}x-5\right)^{20}\ge0\Rightarrow\left(\frac{1}{2}x-5\right)^{20^2}\ge0\)với mọi x
\(\left(y^2-\frac{1}{4}\right)^{10}\ge0\)với mọi y
Suy ra \(\left(\frac{1}{2}x-5\right)^{20^2}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\)(2)
Từ (1) và (2) suy ra
\(\hept{\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}\Rightarrow\hept{\begin{cases}\frac{1}{2}x=5\\y^2=\frac{1}{4}\end{cases}\Rightarrow}\hept{\begin{cases}x=10\\y\in\left\{\frac{1}{2};-\frac{1}{2}\right\}\end{cases}}}\)
Vậy....
a) Vì \(x^2\ge0;\left(y-\frac{1}{10}\right)^2\ge0\)
Mà theo đề bài: \(x^2+\left(y-\frac{1}{10}\right)^2=0\)
=> \(\begin{cases}x^2=0\\\left(y-\frac{1}{10}\right)^2=0\end{cases}\) => \(\begin{cases}x=0\\y-\frac{1}{10}=0\end{cases}\) => \(\begin{cases}x=0\\y=\frac{1}{10}\end{cases}\)
Vậy \(x=0;y=\frac{1}{10}\)
b) Vì \(\left(\frac{1}{2}x-5\right)^{26}\ge0;\left(y^2-\frac{1}{4}\right)^{10}\ge0\)
Mà theo đề bài: \(\left(\frac{1}{2}x-5\right)^{26}+\left(y^2-\frac{1}{4}\right)^{10}=0\)
=> \(\begin{cases}\left(\frac{1}{2}x-5\right)^{26}=0\\\left(y^2-\frac{1}{4}\right)^{10}=0\end{cases}\)=> \(\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}\)=> \(\begin{cases}\frac{1}{2}x=5\\y^2=\frac{1}{4}\end{cases}\)=> \(\begin{cases}x=10\\y\in\left\{\frac{1}{2};\frac{-1}{2}\right\}\end{cases}\)
Vậy \(x=10;y\in\left\{\frac{1}{2};\frac{-1}{2}\right\}\)
Theo bài ra , ta có :
\(\frac{17}{111}:\frac{41}{333}=\frac{5}{4}x\)
\(\Rightarrow\frac{17}{111}.\frac{333}{41}=\frac{5}{4}x\)
\(\Rightarrow\frac{51}{41}=\frac{5}{4}x\)
\(\Rightarrow x=\frac{51}{41}:\frac{5}{4}\)
\(\Rightarrow x=\frac{51}{41}.\frac{4}{5}\)
\(\Rightarrow x=\frac{204}{205}\)
Vậy \(x=\frac{204}{205}\)