Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(3\left(2x-3\right)+2\left(2-x\right)=-3\)
\(\Leftrightarrow6x-9+4-2x=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
Giải:
a) \(\left(x^2+2x+1\right)\left(x+1\right)\)
\(=x^2.x+2x.x+1.x+x^2.1+2x.1+1.1\)
\(=x^3+2x^2+x+x^2+2x+1\)
\(=x^3+3x^2+3x+1\)
b) \(\left(x^3-x^2+2x-1\right)\left(5-x\right)\)
\(=x^3.5-x^2.5+2x.5-1.5+x^3.\left(-x\right)-x^2.\left(-x\right)+2x.\left(-x\right)-1.\left(-x\right)\)
\(=5x^3-5x^2+10x-5-x^4+x^3-2x^2+x\)
\(=6x^3-7x^2+11x-5-x^4\)
c) \(\left(x-5\right)\left(x^3-x^2+2x-1\right)\)
\(=x.x^3-5.x^3+x.\left(-x^2\right)-5.\left(-x^2\right)+x.2x-5.2x+x.\left(-1\right)-5.\left(-1\right)\)
\(=x^4-5x^3-x^3+5x^2+2x^2-10x-x+5\)
\(=x^4-6x^3+7x^2-11x+5\)
Chúc bạn học tốt!!!
lớp 8 Phạm Hoàng Giang không chơi kiểu lớp 7
đúng làm 8 mà làm
\(A=\left(x^2+2x+1\right)\left(x+1\right)=\left(x+1\right)^2\left(x+1\right)=\left(x+1\right)^3\)
\(A=x^3+3x^2+3x+1\)
3: \(\left(x+5\right)\left(x^2-5x+25\right)-x\left(x-4\right)^2+16x\)
\(=x^3+125-x^3+8x^2-16x+16x\)
\(=8x^2+125\)
a/ \(3x(2x-3)=5(3-2x) \Leftrightarrow 3x(2x-3)+5(2x-3)=0 \\\ \Leftrightarrow (2x-3)(3x+5)=0 \)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\3x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=-\frac{5}{3}\end{matrix}\right.\)
KL: .............
b/ \(\left(x^2+1\right)\left(2x+5\right)=\left(x-1\right)\left(x^2+1\right)\Leftrightarrow\left(x^2+1\right)\left(2x+5\right)-\left(x-1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(2x+5-x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\x+6=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\x=-6\end{matrix}\right.\)
KL: .............
c/ \(3x^3=x^2+3x-1\Leftrightarrow3x^3-x^2-3x+1=0\Leftrightarrow x^2\left(3x-1\right)-\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-1\right)=0\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=1\\x=-1\end{matrix}\right.\)
KL: ..........
d/ \(x^2-9x+20=0\Leftrightarrow x^2-5x-4x+20=0\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)
KL: .............
1: Ta có: \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)\)
\(=x^3+6x^2+12x+8+x^2-6x+9-x^3-5x^2\)
\(=6x+17\)
1) Ta có: \(x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
Vậy: S={2}
a)\(\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-5\right)+\left(2x-5\right)^2=x^2+6x+64\)
\(\Rightarrow\left[\left(2x+3\right)-\left(2x-5\right)\right]^2=x^2+6x+64\)
\(\Rightarrow\left(2x+3-2x+5\right)^2=x^2+6x+64\)
\(\Rightarrow8^2=x^2+6x+64\)
\(\Rightarrow64=x^2+6x+64\)
\(\Rightarrow x^2+6x=0\)
\(\Rightarrow x\left(x+6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)
b) \(\left(x^4+2x^3+10x-25\right):\left(x^2+5\right)=3\)
\(\Rightarrow\left(x^4+5x^2-5x^2-25+2x^3+10x\right):\left(x^2+5\right)=3\)
\(\Rightarrow\left[x^2\left(x^2+5\right)-5\left(x^2+5\right)+2x\left(x^2+5\right)\right]:\left(x^2+5\right)=3\)
\(\Rightarrow\left(x^2+5\right)\left(x^2-5+2x\right):\left(x^2+5\right)=3\)
\(\Rightarrow x^2+2x-5=3\)
\(\Rightarrow x^2+2x-5-3=0\)
\(\Rightarrow x^2+2x-8=0\)
\(\Rightarrow x^2+4x-2x-8=0\)
\(\Rightarrow x\left(x+4\right)-2\left(x+4\right)=0\)
\(\Rightarrow\left(x+4\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)
Bạn ơi ! mik hỏi phép này làm thế nào hả bạn ?
( x4 + 5x2 - 5x2 -25 + 2x3 + 10x ) :( x2 + 5 )
TK
ĐKXĐ: x∉{−3;1}
Ta có: 4x2+2x−3=2x−5x+3−2xx−1
⇔(2x−5)(x−1)(x+3)(x−1)−2x(x+3)(x−1)(x+3)=4(x−1)(x+3)
Suy ra: (2x−5)(x−1)−2x(x+3)=4
⇔2x2−2x−5x+5−2x2−6x=4
⇔−13x+5=4
⇔−13x=4−5=−1
hay x=113
(nhận)
Vậy: S={113}