Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x-6=a
=> x-8=a-2
Ta có: a4+(a-2)4=16
=> a4+a4+16a2+16+8a2-32a-8a2=16
=> 2a4+24a2-32a-8a3=0
=> 2a(a3+12a-16-4a2)=0
=> a( a3-2a2-2a2+4a+8a-16)=0
=> a( a-2)(a2-2a+8)=0
Vì a2-2a+8 = a2-2a+1+7=(a-1)2+7 \(\ge\)0 với mọi a.
=> a = 0 hoặc a-2 =0
=> a=0 hoặc a= 2
=> x= 6 hoặc x=8
Vậy phương trình có nghiệm x= 6 hoặc x=8.
Đặt \(\hept{\begin{cases}\sqrt{4+x}=a\\\sqrt{4-x}=b\end{cases}}\)
Ta có
\(\hept{\begin{cases}a^2+ab+4-5a-b=0\left(1\right)\\a^2+b^2=8\left(2\right)\end{cases}}\)
(1) <=> (a2 - a) + (4 - 4a) + (ab - b) = 0
<=> (a - 1)(a - 4 + b) = 0
<=> \(\orbr{\begin{cases}a=1\left(3\right)\\a-4+b=0\left(4\right)\end{cases}}\)
Thế (3) vào (2) ta được
\(\hept{\begin{cases}a=1\\b=\sqrt{7}\end{cases}}\)
=> x = - 3
Thế (4) vào (2) ta được
\(\hept{\begin{cases}a=2\\b=2\end{cases}}\)
=> x = 0
2:
\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)
B=(x1+x2)^2-2x1x2
=3^2-2*(-7)
=9+14=23
C=căn (x1+x2)^2-4x1x2
=căn 3^2-4*(-7)=căn 9+28=căn 27
D=(x1^2+x2^2)^2-2(x1x2)^2
=23^2-2*(-7)^2
=23^2-2*49=431
D=9x1x2+3(x1^2+x2^2)+x1x2
=10x1x2+3*23
=69+10*(-7)=-1
\(\sqrt{x^2+16}-\sqrt{x^2+7}=3x-8\)
\(\Leftrightarrow\left(\sqrt{x^2+16}-5\right)+\left(4-\sqrt{x^2+7}\right)=3x-9\)
\(\Leftrightarrow\frac{x^2-9}{\sqrt{x^2+16}+5}+\frac{9-x^2}{\sqrt{x^2+7}+4}=3\left(x-3\right)\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{x+3}{\sqrt{x^2+16}+5}-\frac{x+3}{\sqrt{x^2+7}+4}-3\right)=0\)
\(\Leftrightarrow x=3\)
\(\hept{\begin{cases}\left(x+y\right)\left(x+z\right)=8\left(1\right)\\\left(x+y\right)\left(y+z\right)=16\left(2\right)\\\left(x+z\right)\left(z+y\right)=32\left(3\right)\end{cases}}\)
Nhân các phương trình (1) , (2) , (3) theo vế ta được : \(\left[\left(x+y\right)\left(y+z\right)\left(x+z\right)\right]^2=4096\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=64\)hoặc \(\left(x+y\right)\left(y+z\right)\left(z+x\right)=-64\)
1. Với (x+y)(y+z)(z+x) = 64 , từ (1) , (2) , (3) suy ra \(\hept{\begin{cases}x+y=2\\y+z=8\\z+x=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=3\\z=5\end{cases}}\)
2. Với (x+y)(y+z)(z+x) = -64 , từ (1) , (2) , (3) suy ra : \(\hept{\begin{cases}x+y=-2\\y+z=-8\\z+x=-4\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\\z=-5\end{cases}}}\)
Vậy nghiệm của hệ là : \(\left(x;y;z\right)=\left(-1;3;5\right);\left(1;-3;-5\right)\)
\(x^4-9x^2+24x-16=\)\(0\)
\(\Leftrightarrow x^4-\left(9x^2-24x+16\right)=0\)
\(\Leftrightarrow x^4-\left(3x-4\right)^2=0\)
\(\Leftrightarrow\left(x^2+3x-4\right)\left(x^2-3x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-1\right)\left[\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\right]=0\)
Vì \(\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)nên:
\(\left(x+4\right)\left(x-1\right)=0:\left[\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\right]\)
\(\Leftrightarrow\left(x+4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)
Vậy phương trình có tập nghiệm \(S=\left\{1;-4\right\}\)
\(x^4=6x^2+12x+\)\(8\)
\(\Leftrightarrow x^4-2x^2+1=4x^2+12x+9\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow|x^2-1|=|2x+3|\)\(|\)
xét các trường hợp:
- Trường hợp 1:
\(x^2-1=2x+3\)
\(\Leftrightarrow x^2-1-2x-3=0\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow\left(x-1\right)^2-5=0\Leftrightarrow\left(x-1\right)^2=5\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=\sqrt{5}\\x-1=-\sqrt{5}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{cases}}}\)
-Trường hợp 2:
\(x^2-1=-2x-3\)
\(\Leftrightarrow x^2-1+2x+3=0\)
\(\Leftrightarrow x^2+2x+2=0\)
\(\Leftrightarrow\left(x+1\right)^2+1=0\)
\(\Leftrightarrow\left(x+1\right)^2=-1\left(vn\right)\)(vô nghiệm)
Vậy phương trình có tập nghiệm: \(S=\left\{1\pm\sqrt{5}\right\}\)
\(Đk:x\ge2\\ PT\Leftrightarrow\dfrac{10\sqrt{x-2}-\sqrt{x-2}+1}{2}=6\sqrt{x-2}\\ \Leftrightarrow9\sqrt{x-2}+1=12\sqrt{x-2}\\ \Leftrightarrow\sqrt{x-2}=\dfrac{1}{3}\Leftrightarrow x-2=\dfrac{1}{9}\\ \Leftrightarrow x=\dfrac{19}{9}\left(tm\right)\)