Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)
B=(x1+x2)^2-2x1x2
=3^2-2*(-7)
=9+14=23
C=căn (x1+x2)^2-4x1x2
=căn 3^2-4*(-7)=căn 9+28=căn 27
D=(x1^2+x2^2)^2-2(x1x2)^2
=23^2-2*(-7)^2
=23^2-2*49=431
D=9x1x2+3(x1^2+x2^2)+x1x2
=10x1x2+3*23
=69+10*(-7)=-1
Đặt \(\hept{\begin{cases}\sqrt{4+x}=a\\\sqrt{4-x}=b\end{cases}}\)
Ta có
\(\hept{\begin{cases}a^2+ab+4-5a-b=0\left(1\right)\\a^2+b^2=8\left(2\right)\end{cases}}\)
(1) <=> (a2 - a) + (4 - 4a) + (ab - b) = 0
<=> (a - 1)(a - 4 + b) = 0
<=> \(\orbr{\begin{cases}a=1\left(3\right)\\a-4+b=0\left(4\right)\end{cases}}\)
Thế (3) vào (2) ta được
\(\hept{\begin{cases}a=1\\b=\sqrt{7}\end{cases}}\)
=> x = - 3
Thế (4) vào (2) ta được
\(\hept{\begin{cases}a=2\\b=2\end{cases}}\)
=> x = 0
a) \(x^4-x^2+\dfrac{1}{4}-\dfrac{225}{4}=0\\ \left(x^2-\dfrac{1}{2}\right)^2-\dfrac{15}{2}^2=0\\ \left(x+7\right)\left(x-8\right)=0\\ \left[{}\begin{matrix}x=8\\x=-7\end{matrix}\right.\)
Vậy x = 8 hoặc x = -7
a: Ta có: \(x^4-x^2-56=0\)
\(\Leftrightarrow x^4-8x^2+7x^2-56=0\)
\(\Leftrightarrow\left(x^2-8\right)\left(x^2+7\right)=0\)
\(\Leftrightarrow x^2-8=0\)
hay \(x\in\left\{2\sqrt{2};-2\sqrt{2}\right\}\)
cấy pt dạng ni lớp 8 học rồi mà :v
chỉ là thêm công thức nghiệm vào thôi ._.
1. ( x + 2 )( x + 4 )( x + 6 )( x + 8 ) + 16 = 0
<=> [ ( x + 2 )( x + 8 ) ][ ( x + 4 )( x + 6 ) ] + 16 = 0
<=> ( x2 + 10x + 16 )( x2 + 10x + 24 ) + 16 = 0
Đặt t = x2 + 10x + 16
pt <=> t( t + 8 ) + 16 = 0
<=> t2 + 8t + 16 = 0
<=> ( t + 4 )2 = 0
<=> ( x2 + 10x + 16 + 4 )2 = 0
<=> ( x2 + 10x + 20 )2 = 0
=> x2 + 10x + 20 = 0
Δ' = b'2 - ac = 25 - 20 = 5
Δ' > 0 nên phương trình có hai nghiệm phân biệt
\(x_1=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-5+\sqrt{5}\)
\(x_2=\frac{-b'-\sqrt{\text{Δ}'}}{a}=-5-\sqrt{5}\)
Vậy ...
2. ( x + 1 )( x + 2 )( x + 3 )( x + 4 ) - 24 = 0
<=> [ ( x + 1 )( x + 4 ) ][ ( x + 2 )( x + 3 ) ] - 24 = 0
<=> ( x2 + 5x + 4 )( x2 + 5x + 6 ) - 24 = 0
Đặt t = x2 + 5x + 4
pt <=> t( t + 2 ) - 24 = 0
<=> t2 + 2t - 24 = 0
<=> ( t - 4 )( t + 6 ) = 0
<=> ( x2 + 5x + 4 - 4 )( x2 + 5x + 4 + 6 ) = 0
<=> x( x + 5 )( x2 + 5x + 10 ) = 0
Vì x2 + 5x + 10 có Δ = -15 < 0 nên vô nghiệm
=> x = 0 hoặc x = -5
Vậy ...
3. ( x - 1 )( x - 3 )( x - 5 )( x - 7 ) - 20 = 0
<=> [ ( x - 1 )( x - 7 ) ][ ( x - 3 )( x - 5 ) ] - 20 = 0
<=> ( x2 - 8x + 7 )( x2 - 8x + 15 ) - 20 = 0
Đặt t = x2 - 8x + 7
pt <=> t( t + 8 ) - 20 = 0
<=> t2 + 8t - 20 = 0
<=> ( t - 2 )( t + 10 ) = 0
<=> ( x2 - 8x + 7 - 2 )( x2 - 7x + 8 + 10 ) = 0
<=> ( x2 - 8x + 5 )( x2 - 7x + 18 ) = 0
<=> \(\orbr{\begin{cases}x^2-8x+5=0\\x^2-7x+18=0\end{cases}}\)
+) x2 - 8x + 5 = 0
Δ' = b'2 - ac = 16 - 5 = 11
Δ' > 0 nên có hai nghiệm phân biệt
\(x_1=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-4+\sqrt{11}\)
\(x_2=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-4-\sqrt{11}\)
+) x2 - 7x + 18 = 0
Δ = b2 - 4ac = 49 - 72 = -23 < 0 => vô nghiệm
Vậy ...
a) Đặt x4 = t ( t ≥ 0 )
pt <=> t2 - 17t + 16 = 0 (*)
Dễ thấy (*) có a + b + c = 0 nên có hai nghiệm t1 = 1 ( tm ) hoặc t2 = 16 ( tm )
=> x4 = 1 hoặc x4 = 16
=> x = ±1 hoặc x = ±2
Vậy ...
b) Đặt t = x3
pt <=> t2 - 4t + 3 = 0 (*)
Dễ thấy (*) có a + b + c = 0 nên có hai nghiệm phân biệt t1 = 1 ; t2 = 3
=> x3 = 1 hoặc x3 = 3
=> x = 1 hoặc x = \(\sqrt[3]{3}\)
\(\sqrt{x+4}+\sqrt{x-4}=2\left(\sqrt{x^2-16}+x-6\right)\)
Đk:\(x\ge4\)
\(\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=\left(\sqrt{x+4}+\sqrt{x-4}\right)^2-12\)
Đặt \(t=\sqrt{x+4}+\sqrt{x-4}\left(t>0\right)\)ta có:
\(t^2-t-12=0\)
\(\Leftrightarrow\left(t-4\right)\left(t+3\right)=0\Leftrightarrow\orbr{\begin{cases}t=-3\left(loai\right)\\t=4\left(tm\right)\end{cases}}\)(do t>0)
- Nếu \(t=4\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=4\)
\(\Leftrightarrow2x+2\sqrt{\left(x+4\right)\left(x-4\right)}=16\)
\(\Leftrightarrow\sqrt{x+4}\sqrt{x-4}=8-x\)
\(\Leftrightarrow\hept{\begin{cases}4\le x\le8\\x^2-16=\left(8-x\right)^2\end{cases}}\)\(\Leftrightarrow x=5\)
Vậy x=5 là nghiệm của pt
\(x^4-9x^2+24x-16=\)\(0\)
\(\Leftrightarrow x^4-\left(9x^2-24x+16\right)=0\)
\(\Leftrightarrow x^4-\left(3x-4\right)^2=0\)
\(\Leftrightarrow\left(x^2+3x-4\right)\left(x^2-3x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-1\right)\left[\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\right]=0\)
Vì \(\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)nên:
\(\left(x+4\right)\left(x-1\right)=0:\left[\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\right]\)
\(\Leftrightarrow\left(x+4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)
Vậy phương trình có tập nghiệm \(S=\left\{1;-4\right\}\)
\(x^4=6x^2+12x+\)\(8\)
\(\Leftrightarrow x^4-2x^2+1=4x^2+12x+9\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow|x^2-1|=|2x+3|\)\(|\)
xét các trường hợp:
- Trường hợp 1:
\(x^2-1=2x+3\)
\(\Leftrightarrow x^2-1-2x-3=0\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow\left(x-1\right)^2-5=0\Leftrightarrow\left(x-1\right)^2=5\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=\sqrt{5}\\x-1=-\sqrt{5}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{cases}}}\)
-Trường hợp 2:
\(x^2-1=-2x-3\)
\(\Leftrightarrow x^2-1+2x+3=0\)
\(\Leftrightarrow x^2+2x+2=0\)
\(\Leftrightarrow\left(x+1\right)^2+1=0\)
\(\Leftrightarrow\left(x+1\right)^2=-1\left(vn\right)\)(vô nghiệm)
Vậy phương trình có tập nghiệm: \(S=\left\{1\pm\sqrt{5}\right\}\)
ĐKXĐ: x>=-1
Sửa đề: \(6\sqrt{x+1}-\sqrt{25x+25}+8\sqrt{\dfrac{x+1}{4}}=10\)
=>\(6\sqrt{x+1}-5\sqrt{x+1}+8\cdot\dfrac{\sqrt{x+1}}{2}=10\)
=>\(\sqrt{x+1}+4\sqrt{x+1}=10\)
=>\(5\sqrt{x+1}=10\)
=>\(\sqrt{x+1}=2\)
=>x+1=4
=>x=3(nhận)
Đặt x-6=a
=> x-8=a-2
Ta có: a4+(a-2)4=16
=> a4+a4+16a2+16+8a2-32a-8a2=16
=> 2a4+24a2-32a-8a3=0
=> 2a(a3+12a-16-4a2)=0
=> a( a3-2a2-2a2+4a+8a-16)=0
=> a( a-2)(a2-2a+8)=0
Vì a2-2a+8 = a2-2a+1+7=(a-1)2+7 \(\ge\)0 với mọi a.
=> a = 0 hoặc a-2 =0
=> a=0 hoặc a= 2
=> x= 6 hoặc x=8
Vậy phương trình có nghiệm x= 6 hoặc x=8.