Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
B= 9+99+999+..+999...9(50 chữ số 9)
B= 10-1+100-1+1000-1+...+100...0(50 chữ số 0)-1
B=[10+100+1000+...+100...0(50 chữ số 0)]-(1+1+1+...+1)(50 số hạng 1)
B= 111...10(50 chữ số 1) - 50
B = 111...1060 (48 chữ số 1)
1. Tính
A = 9 + 99 + 999 + 9999
A = 108 + 999 + 9999
A = 1170 + 9999
A = 11106
Ta có \(\left(...9\right)^2=\left(...1\right)\)
\(\left(...9\right)^{1999}=\left(...9\right)^{2.999+1}=\left(...1\right).\left(9\right)=\left(...9\right)\)
\(\left(...7\right)^4=\left(...1\right)\)
\(\left(...7\right)^{4.499+1}=\left(...1\right).\left(...7\right)=\left(...7\right)\)
A có tận cùng là 2 không chia hết cho 5
Vậy không thể chứng minh a chia hết cho 5
1) 3F=3+32+33+34+...+32016
3F-F=(3+32+33+34+...+32016)-( 1+3+32+33+...+32015)
2F=32016-1
F= 32016-1/2...
2)
19992002+1/19992001 +1<19992002+1+1998/19992001+1+1998
=19992002+1999/19992001+1999
=1999(19992001+1)/1999 .(19992000+1)
=19992001+1/19992000+1=B(vì bạn không có tên cho phân sô nên mình đặt tạm dỡ phải dài dòng)
vật hai phân sô này =nhau