Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 17x(1313/5151+1111/3434):177/12
=17x(13/51+11/34):59/4
=17x(26/102+33/102)x4/59
=17x59/102x4/59
=59/6x4/59
=4/6
=2/3
k cho mình nha
\(17\times\left(\frac{1313}{5151}+\frac{1111}{3434}\right)\div\frac{177}{12}\)
\(=17\times\left(\frac{13}{51}+\frac{11}{34}\right)\div\frac{177}{12}\)
\(=17\times\frac{59}{102}\div\frac{177}{12}\)
\(=\frac{59}{6}\div\frac{177}{12}\)
\(=\frac{59}{6}\times\frac{12}{177}\)
\(=\frac{2}{3}\)
17 x ( 1313/5151 + 1111/3434) : 177/12
= 17 x ( 13/51 + 11/34 ) : 59/4
= 17 x 59/102 : 59/4
= (17 x 59/102) : 59/4
= 59/6 : 59/4
=2/3
a) \(\dfrac{2}{3}+\dfrac{3}{5}=\dfrac{10}{15}+\dfrac{9}{15}=\dfrac{19}{15}\)
a) \(\dfrac{7}{12}-\dfrac{2}{7}+\dfrac{1}{12}=\dfrac{2}{3}-\dfrac{2}{7}=\dfrac{14}{21}-\dfrac{6}{21}=\dfrac{8}{21}\)
a; A = \(\dfrac{4026\times2014+4030}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2014+2015\right)}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2016-2013\times2+2015\right)}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2016-4026+2015\right)}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2016-2011\right)}{2013\times2016-2011}\)
A = 2
\(\frac{1010+1111+1212+1313+1414+1515+1616+1717}{2020+2121+2222+2323+2424+2525+2626+2727}\)
\(=\frac{101.10+101.11+...+101.17}{101.20+101.21+...+101.27}\)
\(=\frac{101.\left(10+11+...+17\right)}{101.\left(20+21+...+27\right)}\)
\(=\frac{108}{188}\)
\(=\frac{27}{47}\)
\(2>\left(\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}\right)\cdot5.y>\frac{5}{6}\)
\(\Rightarrow2>\left(\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{1}{24}\right):5.y>\frac{5}{6}\)
\(\Rightarrow2>\left(\frac{20}{120}+\frac{16}{120}+\frac{9}{120}+\frac{5}{120}\right):5.y>\frac{5}{6}\)
\(\Rightarrow2>\frac{5}{12}:5.y>\frac{5}{6}\)
\(\Rightarrow2>\frac{1}{12}.y>\frac{5}{6}\)
Đặt :\(\frac{1}{12}.y=2\Rightarrow y=2:\frac{1}{12}=24\)
\(\frac{1}{12}.y=\frac{5}{6}\Rightarrow y=\frac{5}{6}:\frac{1}{12}=10\)
\(\Rightarrow24>y>10\)
\(\Rightarrow y\in\left\{11;12;...;23\right\}\)
17 \(\times\) ( \(\dfrac{1313}{5151}\) + \(\dfrac{1111}{3434}\)) : \(\dfrac{117}{512}\)
= 17 \(\times\) ( \(\dfrac{1313:101}{5151:101}\) + \(\dfrac{1111:101}{3434:101}\)) : \(\dfrac{117}{512}\)
= 17 \(\times\) ( \(\dfrac{13}{51}\) + \(\dfrac{11}{34}\)): \(\dfrac{117}{512}\)
= 17 \(\times\) \(\dfrac{59}{102}\) \(\times\) \(\dfrac{512}{117}\)
= \(\dfrac{1003}{102}\) \(\times\) \(\dfrac{512}{117}\)
= \(\dfrac{15104}{351}\)