Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Ta có xy=-6
Với x=-6 => y=1
x=-3 => y=2
x= -2 => y=3
x=-1 => y=6
2/ Ta có x=y+4
Thay x=y+4 vào bt, ta được
<=> y+4-3/y-2 =3/2
<=> y+1/y-2=3/2
<=> 2(y+1)=3(y-2)
<=> 2y +2 = 3y - 6
<=> 3y - 2y= 2+ 6
<=> y= 8 <=> x= 12
3/ -4/8 = x/-10 <=> x= (-4)*(-10)/8=5
-4/8 = -7/y <=> y=(-7)*8/(-4) =14
-4/8 = z/-24 <=> z= (-4)*(-24)/8=12
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
Ta có :
\(\left\{{}\begin{matrix}\left(x-2\right)^{2012}\ge0\\\left|y^2-9\right|^{2014}\ge0\end{matrix}\right.\)
Lại có : \(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y^2-9=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y^2=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy ..
Vì (x-2)2012 ≥ 0
/y2 -9/2014 ≥ 0
=> (x-2)2012 + /y2 -9/2014 = 0
=> (x-2)2012 = 0
/y2 -9/2012 = 0
=> x-2 = 0
y2 -9 = 0
=> x = 2
y2 = 9
=> x=2
y = 3 hoặc -3
Vậy x=2
y = 3 hoặc -3
Ta có: \(\left(x-4\right)^{16}+\left|y-1\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=1\end{matrix}\right.\)