Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3 - 9x2 + 14x = 0
<=> x( x2 - 9x + 14 ) = 0
<=> x( x2 - 2x - 7x + 14 ) = 0
<=> x[ x( x - 2 ) - 7( x - 2 ) ] = 0
<=> x( x - 2 )( x - 7 ) = 0
<=> x = 0 hoặc x = 2 hoặc x = 7
b) x3 - 5x2 + 8x - 4 = 0
<=> x3 - 4x2 - x2 + 4x + 4x - 4 = 0
<=> ( x3 - 4x2 + 4x ) - ( x2 - 4x + 4 ) = 0
<=> x( x2 - 4x + 4 ) - ( x - 2 )2 = 0
<=> x( x - 2 )2 - ( x - 2 )2 = 0
<=> ( x - 2 )2( x - 1 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
c) x4 - 2x3 + x2 = 0
<=> x2( x2 - 2x + 1 ) = 0
<=> x2( x - 1 )2 = 0
<=> \(\orbr{\begin{cases}x^2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
d) 2x3 + x2 - 4x - 2 = 0
<=> ( 2x3 + x2 ) - ( 4x + 2 ) = 0
<=> x2( 2x + 1 ) - 2( 2x + 1 ) = 0
<=> ( 2x + 1 )( x2 - 2 ) = 0
<=> \(\orbr{\begin{cases}2x+1=0\\x^2-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\pm\sqrt{2}\end{cases}}\)
a. Thay \(x_0=2\) vào phương trình, ta được:
\(2^2-3.2+7-1-2.2=8\ne0\)
\(\Rightarrow x_0=2\) không phải là nghiệm của pt
b. Thay \(x_0=-2\) vào phương trình, ta được:
\(\left(-2\right)^2-3.\left(-2\right)-10=0\)
\(\Rightarrow x_0=-2\) là nghiệm của pt
c. Thay \(x_0=2\) vào phương trình, ta được:
\(2^2-3.2+4-2.2+2=0\)
\(\Rightarrow x_0=2\) là nghiệm của pt
d. Thay \(x_0=-1\) vào phương trình, ta được:
\(\left(-1+1\right)\left(-1-2\right)\left(-1-5\right)=0\)
\(\Rightarrow x_0=-1\) là nghiệm của pt
e. Thay \(x_0=-1\) vào phương trình, ta được:
\(2.\left(-1\right)^2+3.\left(-1\right)+1=0\)
\(\Rightarrow x_0=-1\) là nghiệm của pt
f. Thay \(x_0=5\) vào phương trình, ta được:
\(4.5^2-3.5-2.5+1=76\ne0\)
\(\Rightarrow x_0=5\) không là nghiệm của pt
( 2x - 3 )2 = ( x + 1 )2
<=> ( 2x - 3 )2 - ( x + 1 )2 = 0
<=> [ ( 2x - 3 ) - ( x + 1 ) ][ ( 2x - 3 ) + ( x + 1 ) ] = 0
<=> ( 2x - 3 - x - 1 )( 2x - 3 + x + 1 ) = 0
<=> ( x - 4 )( 3x - 2 ) = 0
<=> \(\orbr{\begin{cases}x-4=0\\3x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{2}{3}\end{cases}}\)
x2 - 2x = 24 ( 2x thì tìm đến bao giờ :)) )
<=> x2 - 2x - 24 = 0
<=> x2 + 4x - 6x - 24 = 0
<=> x( x + 4 ) - 6( x + 4 ) = 0
<=> ( x + 4 )( x - 6 ) = 0
<=> \(\orbr{\begin{cases}x+4=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=6\end{cases}}\)
x2 + 2x - 15 = 0
<=> x2 - 3x + 5x - 15 = 0
<=> x( x - 3 ) + 5( x - 3 ) = 0
<=> ( x - 3 )( x + 5 ) = 0
<=> \(\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
4x2 + 12x + 8 = 0
<=> 4( x2 + 3x + 2 ) = 0
<=> 4( x2 + x + 2x + 2 ) = 0
<=> 4[ x( x + 1 ) + 2( x + 1 ) ]= 0
<=> 4( x + 1 )( x + 2 ) = 0
<=> \(\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
( x - 2 )2 - x2 + 4 = 0
<=> x2 - 4x + 4 - x2 + 4 = 0
<=> 8 - 4x = 0
<=> 4x = 8
<=> x = 2
Câu a :
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow-2x=7\)
\(\Leftrightarrow x=-\dfrac{7}{2}\)
Câu b :
\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)
\(\Leftrightarrow3x^2+26x=0\)
\(\Leftrightarrow x\left(3x+26\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+26=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\)
a) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\rightarrow x^3-2x^2+4x+2x^2-4x^2+8-x^3-2x=15\)
\(\rightarrow2x+8=15\)
\(\rightarrow2x=15-8=7\)
\(\Rightarrow x=7:2=3,5\)
Do ko có t/gian nên ko kịp lm câu b
câu 1:\(3^{30}=3^{3^{10}}=27^{10};5^{20}=5^{2^{10}}=25^{10}\)do 27>25 nên \(27^{10}>25^{10}\)hay \(3^{30}>5^{20}\)
câu 2: mình tạm chỉnh lại đề tý
\(\hept{\begin{cases}x^2=zy\left(1\right)\\y^2=xz\left(2\right)\\z^2=xy\left(3\right)\end{cases}}\)lấy (1) chia (2) và (2) chia (3) ta được\(\hept{\begin{cases}\frac{x^2}{y^2}=\frac{y}{x}\\\frac{y^2}{z^2}=\frac{z}{y}\end{cases}\Rightarrow\hept{\begin{cases}y^3=x^3\\y^3=z^3\end{cases}}\Rightarrow x^3=y^3=z^3\Rightarrow x=y=z}\)
câu 3:
\(\frac{x-1}{2009}-1+\frac{x-2}{2008}-1=\frac{x-3}{2007}-1+\frac{x-4}{2006}-1\)
\(\frac{x-2010}{2009}+\frac{x-2010}{2008}=\frac{x-2010}{2007}+\frac{x-2010}{2006}\)
\(\left(x-2010\right).\left(\frac{1}{2009}+\frac{1}{2008}\right)=\left(x-2010\right).\left(\frac{1}{2007}+\frac{1}{2006}\right)\)
Do đó để 2 vế bằng nhau thì x-2010=0=>x=2010
câu 4: vì x và y là hai đại lượng tỉ lệ nghịch nên ta có Công thức \(x.y=x_1.y_1=x_2.y_2=k\Leftrightarrow2.y_1=3.y_2\Rightarrow y_1=\frac{3}{2}y_2\)
thay \(y_1=\frac{3}{2}y_2\)vào phương trình \(y^2_1+y^2_2=52\)
\(\frac{9}{4}y_2^2+y_2^2=52\Rightarrow\frac{13}{4}y_2^2=52\Rightarrow\hept{\begin{cases}y_2=4\\y_2=-4\end{cases}}\Rightarrow\hept{\begin{cases}y_1=6\\y_1=-6\end{cases}}\)
\(4x\left(3-\dfrac{1}{4}x\right)+\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow12x-x^2+x^2-4=0\Rightarrow12x=4\Rightarrow x=\dfrac{1}{3}\)
\(12x-x^2+x^2-2^2=0\)
\(12x-2=0\)
\(12x=2\)
\(x=\dfrac{1}{6}\)
Vậy x=1/6