Cho ABC, M là trung điểm của BC....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`a,`

Xét `\Delta AMC` và `\Delta EMB`:

\(\left\{{}\begin{matrix}\text{MB = MC (M là trung điểm của BC)}\\\widehat{\text{AMC}}=\widehat{\text{BME}}\left(\text{đối đỉnh}\right)\\\text{MA = ME (gt)}\end{matrix}\right.\)

`=> \Delta AMC = \Delta EMB (c-g-c)`

`b,`

Vì `\Delta AMC = \Delta EMB (a)`

`->` $\widehat {ACM} = \widehat {EBM} (\text {2 góc tương ứng})$

Mà `2` góc này nằm ở vị trí sole trong

`->` \(\text{AC // BE (tính chất 2 đường thẳng //)}\)

loading...

11 tháng 5 2023

Thank you
Love you:33

Cho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BCa)CM: tam giác ABM = tam giác ACMb)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BEc) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECKd)CM:Mlà trung điểm của HKCho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BCa)CM: tam giác ABM = tam giác ACMb)Trên tia đối của tia MA...
Đọc tiếp

Cho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC

a)CM: tam giác ABM = tam giác ACM

b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE

c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK

d)CM:Mlà trung điểm của HKCho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC

a)CM: tam giác ABM = tam giác ACM

b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE

c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK

d)CM:Mlà trung điểm của HKCho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC

a)CM: tam giác ABM = tam giác ACM

b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE

c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK

d)CM:Mlà trung điểm của HKCho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC

a)CM: tam giác ABM = tam giác ACM

b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE

c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK

d)CM:Mlà trung điểm của HK

Cho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC

a)CM: tam giác ABM = tam giác ACM

b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE

c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK

d)CM:Mlà trung điểm của HKCho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC

a)CM: tam giác ABM = tam giác ACM

b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE

c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK

d)CM:Mlà trung điểm của HK

Cho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC

a)CM: tam giác ABM = tam giác ACM

b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE

c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK

d)CM:Mlà trung điểm của HK

2
11 tháng 1 2021

A B C M E minh họa thôi --

a, Xét tam giác ABM và tam giác ACM ta có :

AB = AC ( gt )

AM _ chung 

BM = MC ( M là trung điểm )

=> tam giác ABM = tam giác ACM ( c.c.c )

b, Xét tam giác BME và tam giác CMA ta có :

ME = MA ( gt )

^BME = ^CMA ( đđ )

BM = MC ( M là trung điểm )

=> ^BEM = ^CAM ( 2 góc tương ứng )

mà ^BEM và ^CAM ở vị trí so le trong 

=> AC // BE

11 tháng 1 2021

Cho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC

a)CM: tam giác ABM = tam giác ACM

b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE

c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK

d)CM:Mlà trung điểm của HKCho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC

a)CM: tam giác ABM = tam giác ACM

b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE

c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK

d)CM:Mlà trung điểm của HKCho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC

a)CM: tam giác ABM = tam giác ACM

b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE

c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK

d)CM:Mlà trung điểm của HKCho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC

a)CM: tam giác ABM = tam giác ACM

b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE

c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK

d)CM:Mlà trung điểm của HK

Cho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC

a)CM: tam giác ABM = tam giác ACM

b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE

c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK

d)CM:Mlà trung điểm của HKCho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC

a)CM: tam giác ABM = tam giác ACM

b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE

c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK

d)CM:Mlà trung điểm của HK

Cho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC

a)CM: tam giác ABM = tam giác ACM

b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE

c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK

d)CM:Mlà trung điểm của HK

3 tháng 3 2018

câu này mình vừa làm ở bạn Khang Phạm Duy , HÂN nhé

tham khảo .mình giải rất chi tiết 

3 tháng 3 2018

D E F N M I

a) Xét \(\Delta DEM\)và \(\Delta DFN\)

\(\widehat{D}\)chung

DM=DN

DF=DE

\(\Rightarrow\Delta DEM=\Delta DFN\left(c.g.c\right)\)

\(\Rightarrow\widehat{DEM}=\widehat{DFN}\)(2 góc tương ứng)

b,c dễ bn tự làm

7 tháng 2 2022

a) Ta có: OC=OA+AC

OD=OB+BD

Mà OA=OB và AC=BD (gt)

=>OC=OD

Xét Δ OAD và Δ OBC có:

OA=OB (gt)

ˆOO^ góc chung

OC=OD (cmt)

=> Δ OAD=Δ OBC (c.g.c)

=> AD=BC (2 cạnh tương ứng)

Δ OAD=Δ OBC (cmt)

=> ˆD=ˆCD^=C^ và ˆA1=ˆB1A1^=B1^ (2 góc tương ứng)

Mà ˆA1+ˆA2=ˆB1+ˆB2A1^+A2^=B1^+B2^= 180(kề bù)

=> ˆA2=ˆB2A2^=B2^

Δ EAC và Δ EBD có:

ˆC=ˆDC^=D^ (cmt)

AC=BD (gt)

ˆA2=ˆB2A2^=B2^ (cmt)

=> Δ EAC= ΔEBD (g.c.g)

c) Δ EAC=ΔEBD (cmt)

=> EA=EB (2 cạnh tương ứng)

ΔOBE và Δ OAE có:

OB=OA (gt)

ˆB1=ˆA1B1^=A1^ (cmt)

EA=EB (cmt)

=>Δ OBE=Δ OAE (c.g.c)

=> ˆO1=ˆO2O1^=O2^ (2 góc tương ứng)

Vậy OE là phân giác ˆxO

12 tháng 1 2021

Giải:

Hình bạn tự vẽ nhé.

a) Vì M là trung điểm của đoạn thẳng BC (gt)

nên BM = CM

Xét \(\Delta ABM\) và \(\Delta ACM\) có:

\(\hept{\begin{cases}AB=AC\left(gt\right)\\AMchung\\BM=CM\left(cmt\right)\end{cases}}\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)   (đpcm)

b) Xét \(\Delta ACM\) và \(\Delta BEM\) có:

EM = AM (gt)

\(\widehat{BME}=\widehat{AMC}\) (2 góc đối đỉnh)

BM = CM (cmt)

\(\Rightarrow\Delta ACM=\Delta EBM\left(c.g.c\right)\)

 \(\Rightarrow\widehat{EBM}=\widehat{ACM}\) (2 góc tương ứng)

Mà góc này ở vị trí so le trong

\(\Rightarrow AC//BE\) (dấu hiệu nhận biết)   (đpcm)

c) Xét \(\Delta ABM\) và \(\Delta CEM\) có:

AM = EM (gt)

\(\widehat{CME}=\widehat{AMB}\) (2 góc đối đỉnh)

BM = CM (cmt)

\(\Rightarrow\Delta ABM=\Delta ECM\left(c.g.c\right)\)

\(\Rightarrow\) AB = CE (2 cạnh tương ứng)

        \(\widehat{ABM}=\widehat{ECM}\) (2 góc tương ứng) hay \(\widehat{ABC}=\widehat{BCE}\)

Xét \(\Delta BCE\) và \(\Delta ABC\) có:

\(\hept{\begin{cases}AB=CE\left(cmt\right)\\\widehat{BCE}=\widehat{ABC}\left(cmt\right)\\BCchung\end{cases}}\Rightarrow\Delta ABC=\Delta BCE\left(c.g.c\right)\)

\(\Rightarrow\widehat{BEC}=\widehat{BAC}\) (2 góc tương ứng) 

hay \(\widehat{CEK}=\widehat{BAH}\)

Ta có: CK _|_ BE tại K (gt)

           BH _|_ AC tại H (gt)

\(\hept{\begin{cases}\widehat{CKE}=90^o\\\widehat{AHB}=90^o\end{cases}}\Rightarrow\widehat{CKE}=\widehat{AHB}=90^o\)

Xét \(\Delta CEK\) và \(\Delta ABH\)có:

\(\hept{\begin{cases}\widehat{CKE}=\widehat{AHB}=90^o\left(cmt\right)\\AB=CE\left(cmt\right)\\\widehat{CEK}=\widehat{BAH}\left(cmt\right)\end{cases}}\)

\(\Rightarrow\Delta CEK=\Delta BAH\) (cạnh huyền - góc nhọn)

\(\Rightarrow\widehat{ABH}=\widehat{ECK}\) (2 góc tương ứng)   (đpcm)

d) Gọi giao điểm của EM và CK là P, của BH và AM là Q

Ta có: \(\widehat{BEM}=\widehat{CAM}\) (vì \(\Delta ACM=\Delta EBM\))  \(\Rightarrow\widehat{KEP}=\widehat{HAQ}\)

Ta có: \(\widehat{CKE}=\widehat{AHB}\left(cmt\right)\)

\(\Rightarrow\widehat{EKP}=\widehat{AHQ}\)

Xét \(\Delta EKP\) và \(\Delta AHQ\) có:

\(\widehat{KEP}=\widehat{HAQ}\left(cmt\right)\)

EK = AH (vì \(\Delta CEK=\Delta BAH\))

\(\widehat{EKP}=\widehat{AHQ}\left(cmt\right)\)

\(\Rightarrow\Delta EKP=\Delta AHQ\left(g.c.g\right)\)

\(\Rightarrow KP=HQ\) (2 cạnh tương ứng)

Lại có: BE = AC (vì \(\Delta BEM=\Delta CAM\))

            EK = AH (cmt)

Mà \(\hept{\begin{cases}BE=BK+EK\\AC=CH+AH\end{cases}}\Rightarrow BK=CH\)

Vì BE // AC (cmt)

nên \(\widehat{BKH}=\widehat{CHK}\) (2 góc so le trong)

Xét \(\Delta BHK\) và \(\Delta CHK\) có: 

\(\hept{\begin{cases}BK=CH\left(cmt\right)\\\widehat{BKH}=\widehat{CHK}\left(cmt\right)\\HKchung\end{cases}}\Rightarrow\Delta BHK=\Delta CKH\left(c.g.c\right)\)

\(\Rightarrow\widehat{BHK}=\widehat{CKH}\) (2 góc tương ứng)

hay \(\widehat{MHQ}=\widehat{MKP}\)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow BH//CK\) (dấu hiệu nhận biết)

\(\Rightarrow\widehat{KPQ}=\widehat{HQP}\) (2 góc so le trong)

hay \(\widehat{HQM}=\widehat{KPM}\)

Xét \(\Delta KMP\) và \(\Delta HMQ\) có:

\(\hept{\begin{cases}\widehat{HQM}=\widehat{KPM}\left(cmt\right)\\KP=HQ\left(cmt\right)\\\widehat{MHQ}=\widehat{MKP}\left(cmt\right)\end{cases}}\Rightarrow\Delta KMP=\Delta HMQ\left(g.c.g\right)\)

\(\Rightarrow\)KM = HM (2 cạnh tương ứng)  (*)

        \(\widehat{KMP}=\widehat{HMQ}\) (2 góc tương ứng)

Mà \(\widehat{HMQ}+\widehat{HMP}==180^o\) (2 góc kề bù)

\(\Rightarrow\widehat{KMP}+\widehat{HMP}=180^o\)

hay \(\widehat{HMK}=180^o\)

\(\Rightarrow\)3 điểm M, H, K thẳng hàng  (**)

Từ (*), (**)

\(\Rightarrow\) M là trung điểm của HK   (đpcm)

12 tháng 6 2017

Huy Hoang tự vẽ hình nhé!

\(a,\) Xét \(\Delta MAC\)\(\Delta MDC\) ta có:

+) \(MB=MC\) (AM là trung tuyến nên M là trung điểm của BC)

+) \(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)

+) \(MA=MB\left(gt\right)\)

\(\Rightarrow\Delta MAC=MDC\Rightarrow\widehat{BAM}=\widehat{CDM}\)\(CD=AB< AC\)

Trong \(\Delta ADC:AC< CD\Rightarrow\widehat{ADC}>\widehat{DAC}\left(dpcm1\right)\)

\(\widehat{MAB}=\widehat{MDC}\Rightarrow\widehat{MAB}=\widehat{ADC}>\widehat{MAC}\)

\(\Rightarrow MAB>MAC\)

b, AH vuông với BC tại H

=> H là hình chiếu của A trên BC

HB là đường chiếu tương ứng của đường xiên AB

HC là đường chiếu tương ứng của đường xiên AC

\(AB< AC\Rightarrow HB< HC\left(dpcm3\right)\)

Mặt khác E thuộc AH => HB cũng là đường chiếu của đường xiên EB

HC là hình chiếu của đường xiên EC

\(HB< HC\left(theodpcm3\right)\)

\(\Rightarrow EC< EB\left(dpcm4\right)\)

\(\)

12 tháng 6 2017

Hình đây nha bạn!

A B C D H E M

Chúc bạn học tốt!!!

28 tháng 1 2019

tu ve hinh :

a, xet tamgiac MBA va tamgiac MDC co :

goc BMA = goc DMC (doi dinh)

BM = CM do M la trung diem cua BC (GT)

MA = MD (GT)

=> tamgiac MBA = tamgiac MDC (c - g - c)

=> AB = DC (dn) 

tamgiac MBA = tamgiac MDC => goc CDM = goc MAB ma 2 goc nay slt

=> AB // CD (dh)

b, co tamgiac ABC vuong tai A => AB | AC (dn) ; AB // DC (cau a)

=> AC | DC (dl) => tamgiac ACD vuong tai C (dn) 

tamgiac MBA = tamgiac MDC => AB = CD (dn)

goc BAC = goc DCA = 90o do tamgiac ABC vuong tai A va tamgiac DCA vuong tai C

xet tamgiac ACB va tamgiac CAD co AC chung

=> tamgiac ACB = tamgiac CAD (2cgv)

=> BC = AD (dn)

M la trung diem cua BC => M la trung diem cua AD => AM = AD/2 (tc)

=> AM = BC/2

3 tháng 5 2021

Em mới lớp 6 còn ngu nên ko biếtttttttttttttttt

3 tháng 5 2021

a, theo pytago ta có:

AB2+AC2=BC2 <=> AC=\(\sqrt{10^2-6^2}\)=8 (cm)

so sánh: BAC>ABC>ACB vì BC>AC>AB

b, vì A là trung điểm BD nên CA là trung tuyến của tam giác DBC

mà CA\(\perp\)BD nên CA là đường cao của tam giác DBC

=> CA vừa là trung tuyến vừa là đường cao của tam giác DBC nên DBC cân ở C