Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M E minh họa thôi --
a, Xét tam giác ABM và tam giác ACM ta có :
AB = AC ( gt )
AM _ chung
BM = MC ( M là trung điểm )
=> tam giác ABM = tam giác ACM ( c.c.c )
b, Xét tam giác BME và tam giác CMA ta có :
ME = MA ( gt )
^BME = ^CMA ( đđ )
BM = MC ( M là trung điểm )
=> ^BEM = ^CAM ( 2 góc tương ứng )
mà ^BEM và ^CAM ở vị trí so le trong
=> AC // BE
Cho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC
a)CM: tam giác ABM = tam giác ACM
b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE
c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK
d)CM:Mlà trung điểm của HKCho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC
a)CM: tam giác ABM = tam giác ACM
b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE
c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK
d)CM:Mlà trung điểm của HKCho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC
a)CM: tam giác ABM = tam giác ACM
b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE
c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK
d)CM:Mlà trung điểm của HKCho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC
a)CM: tam giác ABM = tam giác ACM
b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE
c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK
d)CM:Mlà trung điểm của HK
Cho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC
a)CM: tam giác ABM = tam giác ACM
b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE
c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK
d)CM:Mlà trung điểm của HKCho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC
a)CM: tam giác ABM = tam giác ACM
b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE
c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK
d)CM:Mlà trung điểm của HK
Cho tam giác ABC có ba góc nhọn. AB=AC. Gọi M là trung điểm của đoạn thẳng BC
a)CM: tam giác ABM = tam giác ACM
b)Trên tia đối của tia MA lấy điểm E sao cho MA=ME. CM: AC//BE
c) kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K. CM góc ABH= góc ECK
d)CM:Mlà trung điểm của HK
câu này mình vừa làm ở bạn Khang Phạm Duy , HÂN nhé
tham khảo .mình giải rất chi tiết
a) Ta có: OC=OA+AC
OD=OB+BD
Mà OA=OB và AC=BD (gt)
=>OC=OD
Xét Δ OAD và Δ OBC có:
OA=OB (gt)
ˆOO^ góc chung
OC=OD (cmt)
=> Δ OAD=Δ OBC (c.g.c)
=> AD=BC (2 cạnh tương ứng)
Δ OAD=Δ OBC (cmt)
=> ˆD=ˆCD^=C^ và ˆA1=ˆB1A1^=B1^ (2 góc tương ứng)
Mà ˆA1+ˆA2=ˆB1+ˆB2A1^+A2^=B1^+B2^= 1800 (kề bù)
=> ˆA2=ˆB2A2^=B2^
Δ EAC và Δ EBD có:
ˆC=ˆDC^=D^ (cmt)
AC=BD (gt)
ˆA2=ˆB2A2^=B2^ (cmt)
=> Δ EAC= ΔEBD (g.c.g)
c) Δ EAC=ΔEBD (cmt)
=> EA=EB (2 cạnh tương ứng)
ΔOBE và Δ OAE có:
OB=OA (gt)
ˆB1=ˆA1B1^=A1^ (cmt)
EA=EB (cmt)
=>Δ OBE=Δ OAE (c.g.c)
=> ˆO1=ˆO2O1^=O2^ (2 góc tương ứng)
Vậy OE là phân giác ˆxO
Giải:
Hình bạn tự vẽ nhé.
a) Vì M là trung điểm của đoạn thẳng BC (gt)
nên BM = CM
Xét \(\Delta ABM\) và \(\Delta ACM\) có:
\(\hept{\begin{cases}AB=AC\left(gt\right)\\AMchung\\BM=CM\left(cmt\right)\end{cases}}\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\) (đpcm)
b) Xét \(\Delta ACM\) và \(\Delta BEM\) có:
EM = AM (gt)
\(\widehat{BME}=\widehat{AMC}\) (2 góc đối đỉnh)
BM = CM (cmt)
\(\Rightarrow\Delta ACM=\Delta EBM\left(c.g.c\right)\)
\(\Rightarrow\widehat{EBM}=\widehat{ACM}\) (2 góc tương ứng)
Mà góc này ở vị trí so le trong
\(\Rightarrow AC//BE\) (dấu hiệu nhận biết) (đpcm)
c) Xét \(\Delta ABM\) và \(\Delta CEM\) có:
AM = EM (gt)
\(\widehat{CME}=\widehat{AMB}\) (2 góc đối đỉnh)
BM = CM (cmt)
\(\Rightarrow\Delta ABM=\Delta ECM\left(c.g.c\right)\)
\(\Rightarrow\) AB = CE (2 cạnh tương ứng)
\(\widehat{ABM}=\widehat{ECM}\) (2 góc tương ứng) hay \(\widehat{ABC}=\widehat{BCE}\)
Xét \(\Delta BCE\) và \(\Delta ABC\) có:
\(\hept{\begin{cases}AB=CE\left(cmt\right)\\\widehat{BCE}=\widehat{ABC}\left(cmt\right)\\BCchung\end{cases}}\Rightarrow\Delta ABC=\Delta BCE\left(c.g.c\right)\)
\(\Rightarrow\widehat{BEC}=\widehat{BAC}\) (2 góc tương ứng)
hay \(\widehat{CEK}=\widehat{BAH}\)
Ta có: CK _|_ BE tại K (gt)
BH _|_ AC tại H (gt)
\(\hept{\begin{cases}\widehat{CKE}=90^o\\\widehat{AHB}=90^o\end{cases}}\Rightarrow\widehat{CKE}=\widehat{AHB}=90^o\)
Xét \(\Delta CEK\) và \(\Delta ABH\)có:
\(\hept{\begin{cases}\widehat{CKE}=\widehat{AHB}=90^o\left(cmt\right)\\AB=CE\left(cmt\right)\\\widehat{CEK}=\widehat{BAH}\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta CEK=\Delta BAH\) (cạnh huyền - góc nhọn)
\(\Rightarrow\widehat{ABH}=\widehat{ECK}\) (2 góc tương ứng) (đpcm)
d) Gọi giao điểm của EM và CK là P, của BH và AM là Q
Ta có: \(\widehat{BEM}=\widehat{CAM}\) (vì \(\Delta ACM=\Delta EBM\)) \(\Rightarrow\widehat{KEP}=\widehat{HAQ}\)
Ta có: \(\widehat{CKE}=\widehat{AHB}\left(cmt\right)\)
\(\Rightarrow\widehat{EKP}=\widehat{AHQ}\)
Xét \(\Delta EKP\) và \(\Delta AHQ\) có:
\(\widehat{KEP}=\widehat{HAQ}\left(cmt\right)\)
EK = AH (vì \(\Delta CEK=\Delta BAH\))
\(\widehat{EKP}=\widehat{AHQ}\left(cmt\right)\)
\(\Rightarrow\Delta EKP=\Delta AHQ\left(g.c.g\right)\)
\(\Rightarrow KP=HQ\) (2 cạnh tương ứng)
Lại có: BE = AC (vì \(\Delta BEM=\Delta CAM\))
EK = AH (cmt)
Mà \(\hept{\begin{cases}BE=BK+EK\\AC=CH+AH\end{cases}}\Rightarrow BK=CH\)
Vì BE // AC (cmt)
nên \(\widehat{BKH}=\widehat{CHK}\) (2 góc so le trong)
Xét \(\Delta BHK\) và \(\Delta CHK\) có:
\(\hept{\begin{cases}BK=CH\left(cmt\right)\\\widehat{BKH}=\widehat{CHK}\left(cmt\right)\\HKchung\end{cases}}\Rightarrow\Delta BHK=\Delta CKH\left(c.g.c\right)\)
\(\Rightarrow\widehat{BHK}=\widehat{CKH}\) (2 góc tương ứng)
hay \(\widehat{MHQ}=\widehat{MKP}\)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow BH//CK\) (dấu hiệu nhận biết)
\(\Rightarrow\widehat{KPQ}=\widehat{HQP}\) (2 góc so le trong)
hay \(\widehat{HQM}=\widehat{KPM}\)
Xét \(\Delta KMP\) và \(\Delta HMQ\) có:
\(\hept{\begin{cases}\widehat{HQM}=\widehat{KPM}\left(cmt\right)\\KP=HQ\left(cmt\right)\\\widehat{MHQ}=\widehat{MKP}\left(cmt\right)\end{cases}}\Rightarrow\Delta KMP=\Delta HMQ\left(g.c.g\right)\)
\(\Rightarrow\)KM = HM (2 cạnh tương ứng) (*)
\(\widehat{KMP}=\widehat{HMQ}\) (2 góc tương ứng)
Mà \(\widehat{HMQ}+\widehat{HMP}==180^o\) (2 góc kề bù)
\(\Rightarrow\widehat{KMP}+\widehat{HMP}=180^o\)
hay \(\widehat{HMK}=180^o\)
\(\Rightarrow\)3 điểm M, H, K thẳng hàng (**)
Từ (*), (**)
\(\Rightarrow\) M là trung điểm của HK (đpcm)
Huy Hoang tự vẽ hình nhé!
\(a,\) Xét \(\Delta MAC\) và \(\Delta MDC\) ta có:
+) \(MB=MC\) (AM là trung tuyến nên M là trung điểm của BC)
+) \(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)
+) \(MA=MB\left(gt\right)\)
\(\Rightarrow\Delta MAC=MDC\Rightarrow\widehat{BAM}=\widehat{CDM}\) Và \(CD=AB< AC\)
Trong \(\Delta ADC:AC< CD\Rightarrow\widehat{ADC}>\widehat{DAC}\left(dpcm1\right)\)
Vì \(\widehat{MAB}=\widehat{MDC}\Rightarrow\widehat{MAB}=\widehat{ADC}>\widehat{MAC}\)
\(\Rightarrow MAB>MAC\)
b, AH vuông với BC tại H
=> H là hình chiếu của A trên BC
HB là đường chiếu tương ứng của đường xiên AB
HC là đường chiếu tương ứng của đường xiên AC
Mà \(AB< AC\Rightarrow HB< HC\left(dpcm3\right)\)
Mặt khác E thuộc AH => HB cũng là đường chiếu của đường xiên EB
HC là hình chiếu của đường xiên EC
Mà \(HB< HC\left(theodpcm3\right)\)
\(\Rightarrow EC< EB\left(dpcm4\right)\)
\(\)
tu ve hinh :
a, xet tamgiac MBA va tamgiac MDC co :
goc BMA = goc DMC (doi dinh)
BM = CM do M la trung diem cua BC (GT)
MA = MD (GT)
=> tamgiac MBA = tamgiac MDC (c - g - c)
=> AB = DC (dn)
tamgiac MBA = tamgiac MDC => goc CDM = goc MAB ma 2 goc nay slt
=> AB // CD (dh)
b, co tamgiac ABC vuong tai A => AB | AC (dn) ; AB // DC (cau a)
=> AC | DC (dl) => tamgiac ACD vuong tai C (dn)
tamgiac MBA = tamgiac MDC => AB = CD (dn)
goc BAC = goc DCA = 90o do tamgiac ABC vuong tai A va tamgiac DCA vuong tai C
xet tamgiac ACB va tamgiac CAD co AC chung
=> tamgiac ACB = tamgiac CAD (2cgv)
=> BC = AD (dn)
M la trung diem cua BC => M la trung diem cua AD => AM = AD/2 (tc)
=> AM = BC/2
a, theo pytago ta có:
AB2+AC2=BC2 <=> AC=\(\sqrt{10^2-6^2}\)=8 (cm)
so sánh: BAC>ABC>ACB vì BC>AC>AB
b, vì A là trung điểm BD nên CA là trung tuyến của tam giác DBC
mà CA\(\perp\)BD nên CA là đường cao của tam giác DBC
=> CA vừa là trung tuyến vừa là đường cao của tam giác DBC nên DBC cân ở C
`a,`
Xét `\Delta AMC` và `\Delta EMB`:
\(\left\{{}\begin{matrix}\text{MB = MC (M là trung điểm của BC)}\\\widehat{\text{AMC}}=\widehat{\text{BME}}\left(\text{đối đỉnh}\right)\\\text{MA = ME (gt)}\end{matrix}\right.\)
`=> \Delta AMC = \Delta EMB (c-g-c)`
`b,`
Vì `\Delta AMC = \Delta EMB (a)`
`->` $\widehat {ACM} = \widehat {EBM} (\text {2 góc tương ứng})$
Mà `2` góc này nằm ở vị trí sole trong
`->` \(\text{AC // BE (tính chất 2 đường thẳng //)}\)
Thank you
Love you:33