Tam giác ABC có góc A là 90 độ có AB/BC=3/5 và AC =16 cm 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AB/BC=3/5

=>AB/3=BC/5=k

=>AB=3k; BC=5k

BC^2=AB^2+AC^2

=>16k^2=16^2=256

=>k^2=16

=>k=4

=>AB=12cm; CB=20cm

b: BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=16/8=2

=>AD=6cm; CD=10cm

28 tháng 2 2023

Cần gấp!!!

Hình bạn tự vẽ nha

GTΔACB vuông tại A, BD là phân giác, AB/CB=3/5; AC=16cm
KL

a: AB=?; BC=?

b: AD=?; CD=?

a: AB/BC=3/5

=>AB/3=BC/5=k

=>AB=3k; BC=5k

BC^2=AB^2+AC^2

=>16k^2=16^2=256

=>k^2=16

=>k=4

=>AB=12cm; CB=20cm

b: BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=16/8=2

=>AD=6cm; CD=10cm

28 tháng 2 2023

A B C 16 D

Với `(AB)/(BC) = 3/5`

`=> (AB)/3 = (BC)/5`

Đặt `(AB)/3 = (BC)/5 = k (k > 0)`

`=> AB = 3k; BC = 5k`

Áp dụng định lý pitago vào tam giác `ABC` vuông tại `A`

`=> AB^2 + AC^2 = BC^2`

`=> (3k)^2 + 16^2 = (5k)^2`

`=> 9k^2 + 256 = 25k^2`

`=> 16k^2 = 256`

`=> k^2 = 16`

`=> k^2 = 4^2`

`=> k = 4 (`Vì `k > 0)`

Khi đó: `AB = 3k = 4 . 3 = 12 (cm)`

`BC = 5k = 5 . 4 = 20 (cm)`

b) Tam giác `ABC` có BD là tia phân giác của tam giác `ABC`. Áp dụng tính chất đường phân giác trong tam giác

`=> (AD)/(AB) = (DC)/(BC) `

`=> (AD)/12 = (DC)/20`

Áp dụng tính chất dãy tỉ số bằng nhau

`=> (AD)/12 = (DC)/20 = (AD + DC)/(12 + 20) = 16/32 = 1/2`

`=> AD = 1/2 xx 12 = 6 (cm) ; DC = 1/2 xx 20 = 10 (cm)`

a: AB/BC=3/5

=>AB/3=BC/5=k

=>AB=3k; BC=5k

BC^2=AB^2+AC^2

=>16k^2=16^2=256

=>k^2=16

=>k=4

=>AB=12cm; CB=20cm

b: BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=16/8=2

=>AD=6cm; CD=10cm

a) Vì tam giác ABC vuông tại A 

=> BAC = 90 độ

=> Vì K là hình chiếu của H trên AB 

=> HK vuông góc với AB

=> HKA = 90 độ

=> HKA = BAC = 90 độ

=> KH // AI 

=> KHIA là hình thang

Mà I là hình chiếu của H trên AC

=> HIA = 90 độ

=> HIA = BAC = 90 độ

=> KHIA là hình thang cân

b) Vì KHIA là hình thang cân

=> KA = HI 

=  >KI = HA 

Xét tam giác KAI vuông tại A và tam giác HIC vuông tại I có

KA = HI

KI = AH 

=> Tam giác KAI = tam giác HIC ( cgv-ch)

=> KIA = ACB ( DPCM)

c) con ý này tớ nội dung chưa học đến  thông cảm

10 tháng 6 2017

A B C D E 1 2 1

Qua B kẻ đường thẳng song song cới AD và cắt tia CA tại E.

Ta có: ^A1=^B1 (So le trong); ^A2=^E (Đồng vị). Mà ^A1=^A2 => ^B1=^E

=> \(\Delta\)BAE cân tại A => AE=AB=2

Sử dụng định lí Ta-lét: \(\frac{AD}{EB}=\frac{AC}{EC}\Rightarrow\frac{1,2}{EB}=\frac{3}{AC+AE}\Rightarrow\frac{1,2}{EB}=\frac{3}{3+2}\Rightarrow\frac{1,2}{EB}=\frac{3}{5}\)

\(\Rightarrow EB=1,2:\frac{2}{5}=\frac{1,2.5}{3}=\frac{6}{3}=2\)\(\Rightarrow AE=AB=EB=2\)

\(\Rightarrow\Delta\)BAE đều \(\Rightarrow\widehat{BAE}=60^0\). Mà ^BAE kề bù với ^BAC

\(\Rightarrow\widehat{BAC}=120^0\).

5 tháng 12 2017

a. Xét tam giác HCD cóHN=DN;HM=CM 

=> MN là đường trung bình của tam giác HCD => MN//DC

=> DNMC là hình thang

b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD

Mà AB=1/2CD => AB =MN

Do MN//CD và AB//CD => AB//MN

Xét tứ giác ABMN có AB//MN; AB=MN

=> ABMN là hình bình hành

c.Ta có MN//CD mà CD vg AD

=> MN vg AD

Xét tam giác ADM có DH và MN là 2 đường cao của tam giác 

Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM

=> AN là đường cao của tam giác ADM

=> AN vg DM

Do ABMN là hình bình hành nên AN//BM

=> BM vg DM => BMD =90*

15 tháng 2 2020

A B C D M N E

a, xét tứ giác  AMDN có : 

góc BAC = góc DMA = góc AND = 90 (gt)

=> AMDN là hình chữ nhật (dấu hiệu)

b,  AMDN là hình chữ nhật (câu a)

=> AN // DM hay AN // ME     (1)

AMDN là hình chữ nhật => AN = MD (tc)

MD = ME do E đối xứng cới D qua M (gt)

=> AN = ME   và (1)

=> AEMN là hình bình hành (dấu hiệu)

=> AN // ME (đn)

c, AMDN là hình chữ nhật (câu a)

để AMDN là hình vuông

<=> DN = DM (dh)               (2)

có D là trung điểm của BC (gt)

DN // AB do AMDN là hình chữ nhật

=> DN là đường trung bình của tam giác ABC 

=> DN = AB/2 (tc)

tương tự có DM = AC/2      và (2)

<=> AB/2 = AC/2

<=> AB = AC 

 tam giác ABC vuông tại A gt)

<=> tam giác ABC vuông cân tại A

vậy cần thêm đk tam giác ABC vuông để AMDN là hình vuông 

+ vì AMDN là hình vuông

=> MN _|_ AD (tc)

=> S AMDN = NM.AD : 2 (Đl)     

tam giác ABC vuông tại A có AD _|_ BC 

=> S ABC = AD.BC : 2   (đl)      (3)

BC = 2NM do NM là đường trung bình của tam giác ABC   và (3)

=> S ABC =  AD.2MN : 2

=> S ABC = 2S AMDN

14 tháng 12 2017

a)  BD, CE là các đường trung tuyến của \(\Delta ABC\)

\(\Rightarrow\)DA = DC;   EA =EB

\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)ED // BC;  ED = 1/2 BC

\(\Delta GBC\)có   MG = MB;   NG = NC

\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)

\(\Rightarrow\)MN // BC;   MN = 1/2 BC

suy ra:  MN // ED;    MN = ED

\(\Rightarrow\)tứ giác MNDE là hình bình hành

c) MN = ED = 1/2 BC

\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)\(\frac{BC}{2}\)= BC