Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cô đã duyệt nôi dung bài của em, bài viết bổ ích nội dung phù hợp. Tuy bài của em có chèn link của trang khác(Điều này không cho phép trên olm) .Nhưng trang hoc24 được phép hoạt động trên olm nên cô cho hiển thị lên trang chủ của olm rồi em nhá.
Các em chú ý tuyệt đối không chèn link của trang web khác lên olm ngoại trừ trang hoc24. Nhưng nội dung của đường link vẫn phải được kiểm soát để tránh tin rác em ạ
Cảm ơn em vì những chia sẻ của em, đóng góp của em trên olm
Chúc em học tập vui vẻ và hiệu quả cùng olm.
Cảm ơn em đã chia sẻ bài viết rất hay và bổ ích
Cảm ơn bạn đã chia sẽ bài viết nhé. Mình sẽ áp dụng rất nhiều đó!
áp dụng cosi a^2+1>=2a tương tự và cộng vế tương ứng suy ra đpcm
\(a^2+b^2+2\ge2\left(a+b\right)\)
\(\Leftrightarrow a^2+b^2+2-2\left(a+b\right)\ge0\)
\(\Leftrightarrow a^2+b^2+2-2a-2b\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}b-1=0\\b-1=0\end{cases}}\)\(\Leftrightarrow a=b=1\)
Vậy ...
\(P=\frac{n^3+2n-1}{n^3+2n^2+2n+1}\)
\(=\frac{n^3+2n-1}{\left(n^3+1\right)+\left(2n^2+2n\right)}\)
\(=\frac{n^3+2n-1}{\left(n+1\right)\left(n^2-n+1\right)+2n\left(n+1\right)}\)
\(=\frac{n^3+2n-1}{\left(n+1\right)\left(n^2+n+1\right)}\)
Để phân thức xác định thì \(n+1\ne0\Rightarrow n\ne1\)
(vì \(n^2+n+1=\left(n+\frac{1}{2}\right)^2+\frac{3}{4}>0\))
Nhận xét nào sau đây là sai?
A:Sự oxi hóa chậm là quá trình oxi hóa có kèm theo tỏa nhiệt nhưng không phát sáng
B:Oxi là chất oxi hóa trong các phản ứng hóa học.
C:Sự cháy là sự oxi hóa có kèm theo tỏa nhiệt và không phát sáng.
D:Sự oxi hóa là quá trình tác dụng của một chất với oxi.
# HOK TỐT #
có nghĩa là lấy 3/2 nhân vs từng số hạng trong ngoặc nó sẽ ra là như vậy
Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow xyz=1\) và \(x;y;z>0\)
Gọi biểu thức cần tìm GTNN là P, ta có:
\(P=\dfrac{1}{\dfrac{1}{x^3}\left(\dfrac{1}{y}+\dfrac{1}{z}\right)}+\dfrac{1}{\dfrac{1}{y^3}\left(\dfrac{1}{z}+\dfrac{1}{x}\right)}+\dfrac{1}{\dfrac{1}{z^3}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)}\)
\(=\dfrac{x^3yz}{y+z}+\dfrac{y^3zx}{z+x}+\dfrac{z^3xy}{x+y}=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
\(P\ge\dfrac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)
\(P_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)
Cảm ơn em nhé, những chia sẻ kiến thức của em rất bổ ích, sẽ có giá trị với nhiều người. Mong em sẽ có nhiều đóng góp tích cực cho olm em nhá.
Nhận ngay giải thưởng 1 coin khi góp ý cho mình tỏng các part sau nhé và có thể bổ sung thêm các tips học toán