cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật, tâm O.Gọi H,K lần lượt là trung điểm SA...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔSAB có H,K lần lượt là trung điểm của SA,SB

=>HK là đường trung bình

=>HK//AB

b: HK//AB

AB//CD

Do đó: HK//CD
c: \(B\in SK\)

\(B\in BC\)

Do đó: SK cắt BC tại B

d: \(HK\subset\left(SAB\right)\)

\(BC\subset\left(SBC\right)\)

Do đó: HK và BC là hai đường thẳng chéo nhau

e: \(HK\subset\left(SAB\right);SD\subset\left(SAD\right)\)

Do đó: HK và SD là hai đường thẳng chéo nhau

f: \(O\in SO\)

\(O\in\left(ABCD\right)\)

Do đó: \(SO\cap\left(ABCD\right)=\left\{O\right\}\)

a: \(C\in AI\)

\(C\in BC\)

Do đó: AI cắt BC tại C

b: HK thuộc mp(SBD)

BC thuộc mp(SBC)

Do đó: HK và BC là hai đường chéo nhau

c:Trong mp(SBD), ta có: HK và SI không song song

=>HK cắt SI tại M

d: \(H\in BC\subset\left(SBC\right)\)

\(H\in AH\)

Do đó: AH cắt (SBC)=H

20 tháng 10 2023

a: Xét ΔSBD có

H,K lần lượt là trung điểm của SB,SD

=>HK là đường trung bình của ΔSBD

=>HK//BD

mà \(BD\subset\left(ABCD\right)\);HK không thuộc (ABCD)

nên HK//(ABCD)

b: Chọn mp(SBD) có chứa BK

\(O\in BD\subset\left(SBD\right);O\in AC\subset\left(SAC\right)\)

=>\(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Gọi E là giao điểm của SO với BK

=>E là giao điểm của BK với mp(SAC)

=>BK cắt (SAC) tại E

c: \(O\in BD\subset\left(SBD\right);S\in\left(SBD\right)\)

Do đó: \(SO\subset\left(SBD\right)\)

7 tháng 10 2023

Qua G kẻ đường thẳng song song AC lần lượt cắt AD, AB, BC tại E, F, N.

FN⇒�� là giao tuyến của (GHK) và (ABCD)

Nối EH kéo dài cắt SD tại M M⇒� là giao điểm SD và (NHK)

c/ Gọi P là giao điểm của FN kéo dài và CD

Ta có AC//EP��//�� ΔDACΔDEP⇒Δ���∼Δ���, mà BD qua trung điểm của AC BD⇒�� qua trung điểm của EP G⇒� là trung điểm EP

HK//EPΔMEPΔMHK��//��⇒Δ���∼Δ���

Mà MG qua trung điểm của EP  MG qua trung điểm của HK hay G,M,E thẳng hàng

 

28 tháng 10 2023

a: Xét ΔSAC có

H,K lần lượt là trung điểm của SA,SC

=>HK là đường trung bình

=>HK//AC

Xét (GHK) và (ABCD) có

HK//AC
\(G\in\left(GHK\right)\cap\left(ABCD\right)\)

Do đó: (GHK) giao (ABCD)=xy, xy đi qua G và xy//HK//AC

b: Chọn mp(SBD) có chứa SD

Gọi O là giao điểm của AC và BD

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔABC có

G là trọng tâm

BO là trung tuyến của ΔABC

Do đó: B,O,G thẳng hàng

=>G\(\in\)BD

Trong mp(SAC), gọi I là giao điểm của SO với HK

\(I\in SO\subset\left(SBD\right);I\in HK\subset\left(GHK\right)\)

=>\(I\in\left(SBD\right)\cap\left(GHK\right)\)(1)

\(G\in BD\subset\left(SBD\right);G\in\left(GHK\right)\)

=>\(G\in\left(SBD\right)\cap\left(GHK\right)\left(2\right)\)

Từ (1) và (2) suy ra \(\left(SBD\right)\cap\left(GHK\right)=GI\)

Gọi M là giao điểm của SD với GI

=>M là giao điểm của SD với (SHK)

c: Xét ΔSAC có

O,K lần lượt là trung điểm của CA,CS

=>OK là đường trung bình của ΔSAC

=>OK//SA và OK=SA/2

OK=SA/2

SH=SA/2

Do đó: OK=SH

Xét tứ giác SHOK có

SH//OK

SH=OK

Do đó: SHOK là hình bình hành

=>HK cắt SO tại trung điểm của mỗi đường

mà E là trung điểm của HK

nên Elà trung điểm của SO

=>E trùng với I

=>(SBD) giao (GHK)=GE

=>G,E,M thẳng hàng

a: \(K\in HK;K\in BC\)

Do đó: HK cắt BC tại K

b: Xét ΔBAC có

H,K lần lượt là trung điểm của BA,BC

=>HK là đường trung bình

=>HK//AC
c: C thuộc BK

C thuộc CD

Do đó: BK cắt CD tại C

e: Trong mp(ABCD), ta có: HK và CD không song song vối nhau

=>HK cắt CD tại M

21 tháng 1 2021

a) Xét tam giác SAB và tam giác SAD có: 

+) Chung SA

+) \(AB=AD\)

+) \(\widehat{SAB}=\widehat{SAD}=90^0\) (Vì \(SA\perp\left(ABCD\right)\Rightarrow\left\{{}\begin{matrix}SA\perp AB\\SA\perp AD\end{matrix}\right.\) )

\(\Rightarrow\Delta SAB=\Delta SAD\left(c-g-c\right)\)

\(\Rightarrow\widehat{SAB}=\widehat{SAD}\)

\(\Rightarrow\Delta SAH=\Delta SAK\left(ch-gn\right)\)

\(\Rightarrow SH=SK\)

Mà SB=SD (Do \(\Delta SAB=\Delta SAD\))

\(\Rightarrow\dfrac{SH}{SB}=\dfrac{SK}{SD}\)

\(\Rightarrow\)HK||BD( Áp dụng Talet cho tam giác SBD)

b)Đặt SA=x, AB=y

Gọi O là tâm của đáy (ABCD), trong mp(SAC) cho SO cắt AI tại J

S A C I J O

Ta tính được \(SC=\sqrt{x^2+2y^2}\) và SO=\(\sqrt{x^2+\dfrac{y^2}{2}}\)

Áp dụng định lí cos cho tam giác OSC có:

\(2SO.SC.\cos OSC=SO^2+SC^2-OC^2=x^2+\dfrac{y^2}{2}+x^2+2y^2-\dfrac{y^2}{2}=2x^2+2y^2\)

\(\Rightarrow SO.SC.cosOSC=x^2+y^2\)

\(\dfrac{SJ}{SO}=\dfrac{SI}{SO.cosOSC}=\dfrac{SA^2}{SC.SO.cosOSC}=\dfrac{x^2}{x^2+y^2}\left(1\right)\)

\(SK=\dfrac{SA^2}{SD}\Rightarrow\dfrac{SK}{SD}=\dfrac{SA^2}{SD^2}=\dfrac{x^2}{x^2+y^2}\left(2\right)\)

Từ (1) và (2), áp dụng định lí Talet đảo cho tam giác SDO ta có KJ||DO hay KJ||BD

Chứng minh tương tự ta có: JH||BD

Mà HK||BD nên K,H,J thẳng hàng 

\(\Rightarrow\exists1\) mặt phẳng chứa 4 điểm A,H,I,K (Vì AI cắt HK tại J)

\(\Rightarrow I\in mp\left(AHK\right)\)(đpcm)

Ta có: \(\left\{{}\begin{matrix}BD\perp AC\\SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\end{matrix}\right.\Rightarrow BD\perp\left(SAC\right)\)

Mà HK||BD

\(\Rightarrow HK\perp\left(SAC\right)\left(đpcm\right)\)

 

 

29 tháng 8 2023

a) Để tìm giao điểm M của SD và (GHK), ta có thể sử dụng tính chất của đường thẳng và mặt phẳng. Đầu tiên, ta cần tìm phương trình đường thẳng SD và phương trình mặt phẳng GHK. Sau đó, ta giải hệ phương trình để tìm giao điểm M.

b) Để chứng minh G, E, M thẳng hàng, ta có thể sử dụng định lý về trọng tâm của tam giác và tính chất của trung điểm. Chúng ta cần chứng minh rằng G, E, M nằm trên cùng một đường thẳng.