Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho đường tròn tâm (O) và điểm K nằm ngoài đường tròn. Từ K kẻ các tiếp tuyến KA,KB đến (O). Một đường thẳng qua K cắt (O) tại C,D sao cho C nằm giữa K và D, đồng thời hai điểm O, A nằm khác phía so với CD.
a) CM tứ giác OAKB nội tiếp và KA2= KC.KD
b) Gọi M là giao điểm của đoạn OK và AB. CM góc KMC=KDO
c) Kẻ đường kính AI của (O). Gọi G, N lần lượt là giao điểm của OK với các đoạn CI, DI. Chứng minh tứ giác AMND nội tiếp và OG=ON.
a: góc OAK+góc OBK=180 độ
=>OAKB nội tiếp
Xét ΔKAC và ΔKDA có
góc KAC=góc KDA
góc AKC chung
=>ΔKAC đồng dạng với ΔKDA
=>KA/KD=KC/KA
=>KA^2=KD*KC
b: Xét (O) có
KA,KB là tiếp tuyến
=>KA=KB
mà OA=OB
nên OK là trung trực của AB
=>OK vuông góc AB tại M
Xét ΔOAK vuông tại A có AM vuông góc OK
nên KM*KO=KA^2=KC*KD
=>KM/KD=KC/KO
=>ΔKMC đồng dạng với ΔKDO
=>góc KMC=góc KDO
a: góc OAK+góc OBK=90+90=180 độ
=>OAKB nội tiếp
Xét ΔKAC và ΔKDA có
góc KAC=góc KDA
góc AKC chung
=>ΔKAC đồng dạng với ΔKDA
=>KA^2=KC*KD
b: Xét (O) có
KA,KB là tiếp tuyến
=>KA=KB
=>OK là trung trực của AB
=>KM*KO=KA^2=KC*KD
=>KM/KD=KC/KO
=>ΔKMC đồng dạng với ΔKDO
=>góc KMC=góc KDO