Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAC có BD là phân giác
nên AD/AB=DC/BC
=>AD/4=DC/1=(AD+DC)/(4+1)=40/5=8
=>AD=32cm; DC=8cm
b: Kẻ đường cao AH
=>H là trung điểm của BC
=>HB=HC=5cm
Xét ΔAHC vuông tại H có sin C=AH/AC=5/40=1/8
nên góc C=7 độ
\(BD=\dfrac{2\cdot40\cdot10}{40+10}\cdot\dfrac{cos\widehat{B}}{2}\simeq15,97\left(cm\right)\)
a: Xét ΔBAC có BD là phân giác
nên AD/AB=DC/BC
=>AD/4=DC/1=(AD+DC)/(4+1)=40/5=8
=>AD=32cm; DC=8cm
b: Kẻ đường cao AH
=>H là trung điểm của BC
=>HB=HC=5cm
Xét ΔAHC vuông tại H có sin C=AH/AC=5/40=1/8
nên góc C=7 độ
\(BD=\dfrac{2\cdot40\cdot10}{40+10}\cdot\dfrac{cos\widehat{B}}{2}\simeq15,97\left(cm\right)\)
a, Xét tam giác ABC:
AD= DB
DE// BC
=> AE= EC ( tính chất đg TB)
=> AE= EC = \(\dfrac{1}{2}\)AC= \(\dfrac{1}{2}\).8= 4 cm.
b,Xét tam giác ABC : ^B= 90o
AC2= AB2 + BC2 ( Định lý Pitago)
152= 92 + BC2
=> BC2= 152 - 92 = 144
BC = 12 cm
Theo tính chất đg TB, ta có: DE// BC
=> DE= \(\dfrac{1}{2}\)BC = \(\dfrac{1}{2}\).12 = 6cm
Chúc bạn học tốt !!
A B C D M N P Q K
Bạn cần thêm điều kiện AB = AD .
Gọi K là trung điểm của AD. Dễ dàng chứng minh được MNPQ là hình vuông
Suy ra : \(S_{MNPQ}=\frac{NQ^2}{2}\)
Mặt khác, ta luôn có : \(KQ+QN\ge KN\) \(\Rightarrow QN\ge\left|KN-KQ\right|=\frac{1}{2}\left|c-a\right|\)
\(\Rightarrow QN^2\ge\frac{\left(c-a\right)^2}{4}\Rightarrow S_{MNPQ}=\frac{QN^2}{2}\ge\frac{\left(c-a\right)^2}{8}\)
Dấu "=" xảy ra khi M , Q, N thẳng hàng => AB // CD
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(AC^2=CH\cdot BC\)
b: \(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\)
c: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB\cdot AC=BC\cdot HA\)
hay \(\dfrac{BA}{BC}=\dfrac{HA}{AC}\left(1\right)\)
Xét ΔABC có BD là phân giác
nên BA/BC=DA/DC(2)
Từ (1) và (2) suy ra \(\dfrac{HA}{AC}=\dfrac{DA}{DC}\)
hay \(HA\cdot DC=DA\cdot AC\)
\(a,\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)
\(=x^2+2x+1-\left(x^2-2x+1\right)-3\left(x^2-1\right)\)
\(=x^2+2x+1-x^2+2x-1-3x^2+2=-3x^2+4x+2\)\(b,5\left(x+2\right)\left(x-2\right)-\left(2x-3\right)^2-x^2+17\)
\(=5\left(x^2-4\right)-\left(4x^2-12x+9\right)-x^2+17\)
\(=5x^2-20-4x^2+12x-9-x^2+17=12x-12\)
a: Xét ΔBAC có BD là phân giác
nên AD/AB=DC/BC
=>AD/4=DC/1=(AD+DC)/(4+1)=40/5=8
=>AD=32cm; DC=8cm
b: Kẻ đường cao AH
=>H là trung điểm của BC
=>HB=HC=5cm
Xét ΔAHC vuông tại H có sin C=AH/AC=5/40=1/8
nên góc C=7 độ
\(BD=\dfrac{2\cdot40\cdot10}{40+10}\cdot\dfrac{cos\widehat{B}}{2}\simeq15,97\left(cm\right)\)
lớp 8 mà đã sin và cos rồi là sao?=)