Câu 1
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2021

Chiều nay mk chốt đơn

16 tháng 6 2021

sao giống đề của mình vậy :o

 Những bài toán nâng cao lớp 7A. PHẦN ĐẠI SỐBài toán 1. So sánh:  và Bài toán 2. Tính tỉ số  biết:Bài toán 3. Cho x, y, z, Chứng minh rằng:  có giá tri không phải là số tư nhiên.Bài toán 4. Tìm x ;  biết:b. c. x+y+9=xy-7Bài toán 5. Tìm x biếtab. Bài toán 6. Chứng minh rằng:  thì  chia hết cho 4 .Bài toán 7. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 +...
Đọc tiếp

 

Những bài toán nâng cao lớp 7

A. PHẦN ĐẠI SỐ

Bài toán 1. So sánh: 2009^{20} và 20092009^{10}.

Bài toán 2. Tính tỉ số \frac{A}{B}, biết:

A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}

B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+\ldots+\frac{2}{2007}+\frac{1}{2008}

Bài toán 3. Cho x, y, z, t \in \mathrm{N}^{*}.

Chứng minh rằng: \mathrm{M}=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t} có giá tri không phải là số tư nhiên.

Bài toán 4. Tìm x ; y \in Z biết:

a. 25-y^{2}=8(\mathrm{x}-2009)

b. x^{3} y=x y^{3}+1997

c. x+y+9=xy-7

Bài toán 5. Tìm x biết

a. |5(2 x+3)|+|2(2 x+3)|+|2 x+3|=16

b. \left|x^{2}+\right| 6 x-||2=x^{2}+4.

Bài toán 6. Chứng minh rằng: \frac{3}{1^{2} .2^{2}}+\frac{5}{2^{2} \cdot 3^{2}}+\frac{7}{3^{2} \cdot 4^{2}}+\ldots+\frac{19}{9^{2} \cdot 10^{2}}<1

\mathrm{x}_{n \cdot} \mathrm{X}_{1}=0 thì \mathrm{n} chia hết cho 4 .

Bài toán 7. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.

Bài toán 8 . Chứng minh rằng:

\mathrm{S}=\frac{1}{2^{2}}-\frac{1}{2^{4}}+\frac{1}{2^{6}}-\ldots+\frac{1}{2^{4 n-2}}-\frac{1}{2^{4 n}}+\ldots+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}<0,2

Bài toán 9.  Tính giá tri của biểu thức \mathrm{A}=x^{n}+\frac{1}{x^{n}} giả sử x^{2}+x+1=0.

Bài toán 10. Tìm max của biểu thức: \frac{3-4 x}{x^{2}+1}.

Bài toán 11. Cho \mathrm{x}, y, \mathrm{z} là các số dương. Chứng minh rằng

\mathrm{D}=\frac{x}{2 x+y+z}+\frac{y}{2 y+z+x}+\frac{z}{2 z+x+y} \leq \frac{3}{4}

Bài toán 12. Tìm tổng các hê số của đa thức nhân đươc sau khi bỏ dấu ngoăc trong biểu thức:

\mathrm{A}(\mathrm{x})=(3 - \left.4 x+x^{2}\right)^{2004} \cdot\left(3+4 x+x^{2}\right)^{2005}

Bài toán 13. Tìm các số a, b, c nguyên dương thỏa mãn: a^{3}+3

a^{2}+5=5^{b} và \mathrm{a}+3=5^{c}

Bài toán 14. Cho \mathrm{x}=2005. Tính giá tri của biểu thức:

x^{2005}-2006 x^{2004}+2006 x^{2003}-2006 x^{2002}+\ldots-2006 x^{2}+2006 x-1

Bài toán 15. Rút gọn biểu thức:\mathrm{N}=\frac{x|x-2|}{x^{2}+8 x-20}+12 x-3

Bài toán 16. Trong 3 số x, y, z có 1 số dương, 1 số âm và một số 0 . Hỏi mỗi số đó thuộc loài nào biết: |x|=y^{3}-y^{2} z

Bài toán 17. Tìm hai chữ số tận cùng của tổng sau: \mathrm{B}=3+3^{2}+3^{3}+3^{4}+\ldots+3^{2009}

Bài toán 18. Cho 3 \mathrm{x}-4 \mathrm{y}=0. Tìm min của biểu thức: \mathrm{M}=x^{2}+y^{2}

Bài toán 19. Tìm x, y, z biết:\frac{x^{2}}{2}+\frac{y^{2}}{3}+\frac{z^{2}}{4}=\frac{x^{2}+y^{2}+z^{2}}{5}.

Bài toán 20. Tìm x, y biết rằng: x^{2}+y^{2}+\frac{1}{x^{2}}+\frac{1}{y^{2}}=4

Bài toán 21. Cho a là số gồm 2n chữ số 1, \mathrm{~b} là số gồm \mathrm{n}+1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a +\mathrm{b}+\mathrm{c}+8là số chính phương.

Bài toán 22. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho \mathrm{ab}+4 là số chính phương.

Bài toán 23. Chứng minh rằng nếu các chữ số a, b, c thỏa mãn điều kiện \overline{a b}: \overline{c d}=a: c thì \overline{a b b b}: \overline{b b b c}=a: c.

Bài toán 24. Tìm phân số \frac{m}{n} khác 0 và số tự nhiên k, biết rằng\frac{m}{n}=\frac{m+k}{n k}.

Bài toán 25. Cho hai số tự nhiên a và \mathrm{b}(\mathrm{a}<\mathrm{b}). Tìm tổng các phân số tối giản có mẫu bằng 7 , mỗi phân số lớn hơn a nhưng nhỏ hơn b.

Bài toán 26. Chứng minh rằng:\mathrm{A}=1+3+5+7+\ldots+\mathrm{n} là số chính phương (n lẻ).

Bài toán 27. Tìm n biết rằng: n^{3}-n^{2}+2 n+7 chia hết cho n^{2}+1.

Bài toán 28. Chứng minh rằng: \mathrm{B}=2^{2^{2 n+1}}+3 là hợp số với mọi số nguyên dương n

Bài toán 29. Tìm số dư khi chia\left(\mathrm{n}^{3}-1\right)^{111}. (n \left.^{2}-1\right)^{333}cho n

Bài toán 30. Tìm số tự nhiên n để 1^{n}+2^{n}+3^{n}+4^{n} chia hết cho 5 .

Bài toán 31 .

a. Chứng minh rằng: Nếu a không là bội số của 7 thì \mathrm{a}^{6}-1 chia hết cho 7 .

b. Cho \mathrm{f}(\mathrm{x}+1)\left(\mathrm{x}^{2}-1\right)=\mathrm{f}(\mathrm{x})\left(\mathrm{x}^{2}+9\right) có ít nhất 4 nghiệm.

c. Chứng minh rằng: \mathrm{a}^{5}-\mathrm{a} chia hết cho 10 .

Bài toán 32. Tính giá trị của biểu thức: \mathrm{A}=5 y^{4}+7 x-2 z^{5} tai \left(\mathrm{x}^{2}-1\right)+(\mathrm{y}-\mathrm{z})^{2}=16.

Bài toán 33. Chứng minh rằng:

a. 0,5\left(2007^{2005}-2003^{2003}\right) là một số nguyên.

b. \mathrm{M}=\frac{1986^{2004}-1}{1000^{2004}-1} không thể là số nguyên.

c. Khi viết dưới dạng thập phân thì số hữu tỉ \left(\frac{9}{11}-0,81\right)^{2004} có ít nhất 4000 chữ số 0 đầu tiên sau dấu phẩy

                      HET .................................

0
NM
13 tháng 9 2021

ta có :

\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\) 

tương tự ta sẽ có : \(1< M< 2\) vậy M không phải số tự nhiên.

Bài 4.

a.ta có \(25-y^2\text{ chia hết cho 8 khi y là số lẻ}\)

vậy với mọi y lẻ thì đều thỏa mãn câu a

b. ta có :\(xy\left(x^2-y^2\right)=1997\Leftrightarrow xy\left(x-y\right)\left(x+y\right)=1997\)

vậy x,y phải là ước của 1997 mà 1997 là số nguyên tố nên : \(x,y\in\left\{-1997,-1,1,1997\right\}\)

thay lại không thỏa mãn

vậy pt không có nghiệm nguyên

c. ta có : \(\left(x-1\right)\left(y-1\right)=17\Rightarrow\orbr{\begin{cases}x-1=\pm1\\x-1=\pm17\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\text{ hoặc }\orbr{\begin{cases}x=-16\\x=18\end{cases}}\)

tương ứng ta có các cặp (xy) là (0,-16) (2,18), (-16,0), (18,2)

DD
11 tháng 6 2021

\(\frac{x}{3}=\frac{y}{5}=t\Leftrightarrow\hept{\begin{cases}x=3t\\y=5t\end{cases}}\).

\(A=\frac{5x^2+3y^2}{10x^2-3y^2}=\frac{5.\left(3t\right)^2+3.\left(5t\right)^2}{10.\left(3t\right)^2-3.\left(5t\right)^2}=\frac{120t^2}{15t^2}=8\)

16 tháng 11 2021

Bài 3

a, \(|x+\frac{7}{3}|\ge|-3,5|\)

\(\Rightarrow|x+\frac{7}{3}|\ge3,5\)

\(\Rightarrow\orbr{\begin{cases}x+\frac{7}{3}\ge3,5\\x+\frac{7}{3}\le-3,5\end{cases}\Rightarrow\orbr{\begin{cases}x\ge\frac{7}{6}\\x\le-\frac{35}{6}\end{cases}}}\)

Vậy .....

b,\(|x-1|\le3\frac{1}{4}\)

\(\Rightarrow|x-1|\le\frac{13}{4}\)\(\Rightarrow\orbr{\begin{cases}x-1\le\frac{13}{4}\\x-1\ge-\frac{13}{4}\end{cases}\Rightarrow\orbr{\begin{cases}x\le\frac{17}{4}\\x\ge-\frac{9}{4}\end{cases}}}\)

Vậy ....

Bài 4 :

Vì \(|2x-\frac{1}{3}|\ge0\forall x\Rightarrow|2x-\frac{1}{3}|-1\frac{3}{4}\ge-1\frac{3}{4}\)

Dấu "=" sảy ra <=> \(2x-\frac{1}{3}=0\Leftrightarrow2x=\frac{1}{3}\Leftrightarrow x=\frac{1}{6}\)

Vậy .....

Bài 5

B = \(\frac{1}{3+\frac{1}{2}.|2x-3|}=\frac{1}{3+|x-1,5|}\)

mà \(|x-1,5|\ge0\forall x\Rightarrow3+|x-1,5|\ge3\forall x\)

\(\Rightarrow B\le\frac{1}{3}\)

Dấu "=" sảy ra <=> x - 1,5= 0 <=> x = 1,5

Vậy .....

Học tốt 

có bài  nào hay ib mk ha

#Gấu

6 tháng 7 2024

Đề bài bị lỗi rồi em nhé. 

25 tháng 7 2021

a, Ta có: \(\frac{a}{c}\)\(\frac{c}{b}\)\(\Rightarrow\)\(ab\)\(c^2\)

Để chứng minh \(\frac{a^2+c^2}{b^2+c^2}\)\(\frac{a}{b}\)thì ta phải chứng minh b(a2+c2)=a(b2+c2)

Ta có: b(a2+c2)= b.a2+b.c(1)

Thay ab= c2 vào 1 ta có:

b.a2+b.a.b= b2.a+a2.bb

Ta có: a(b2+c2) = a.b2+a.c2 (2)

Thay ab= c2 vào (1) ta có:

a.b2+b.a.a= b2.a+a2.bb

Vì b2.a+a2.b= b2.a+a2.b \(\Rightarrow\)b(a2+c2)= a(b2+c2)

\(\Rightarrow\)\(\frac{a^2+c^2}{b^2+c^2}\)\(\frac{a}{b}\)

\(\Rightarrow\)Đpcm (Điều phải chứng minh)

Chúc bn học tốt

25 tháng 7 2021

a.

\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow c^2=ab\Rightarrow\frac{a^2+ab}{b^2+ab}=\frac{a.\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)

b.

\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow c^2=ab\Rightarrow\frac{\left(b^2-ab\right)+\left(ab-a^2\right)}{a\left(a+b\right)}=\frac{b\left(b-a\right)+a\left(b-a\right)}{a\left(a+b\right)}=\frac{b-a}{a}\)

a.Ta có $Oy, Oz$ cùng nằm trên nửa mặt phẳng có bờ là đường thẳng chứa tia $Ox$

             $\widehat{xOy}=30^o,\widehat{xOz}=120^o\to \widehat{xOy}<\widehat{xOz}$

$\to Oy$ nằm giữa $Ox, Oz$

$\to \widehat{yOz}=\widehat{xOz}-\widehat{xOy}=90^o$

b.Ta có $Om,On$ là phân giác $\widehat{xOy},\widehat{xOz}$

$\to \widehat{xOm}=\dfrac12\widehat{xOy}=15^o,\widehat{xOn}=\dfrac12\widehat{xOz}=60^o$

$\to \widehat{mOn}=\widehat{xOn}-\widehat{xOm}=45^o$