Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
tương tự ta sẽ có : \(1< M< 2\) vậy M không phải số tự nhiên.
Bài 4.
a.ta có \(25-y^2\text{ chia hết cho 8 khi y là số lẻ}\)
vậy với mọi y lẻ thì đều thỏa mãn câu a
b. ta có :\(xy\left(x^2-y^2\right)=1997\Leftrightarrow xy\left(x-y\right)\left(x+y\right)=1997\)
vậy x,y phải là ước của 1997 mà 1997 là số nguyên tố nên : \(x,y\in\left\{-1997,-1,1,1997\right\}\)
thay lại không thỏa mãn
vậy pt không có nghiệm nguyên
c. ta có : \(\left(x-1\right)\left(y-1\right)=17\Rightarrow\orbr{\begin{cases}x-1=\pm1\\x-1=\pm17\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\text{ hoặc }\orbr{\begin{cases}x=-16\\x=18\end{cases}}\)
tương ứng ta có các cặp (xy) là (0,-16) (2,18), (-16,0), (18,2)
\(\frac{x}{3}=\frac{y}{5}=t\Leftrightarrow\hept{\begin{cases}x=3t\\y=5t\end{cases}}\).
\(A=\frac{5x^2+3y^2}{10x^2-3y^2}=\frac{5.\left(3t\right)^2+3.\left(5t\right)^2}{10.\left(3t\right)^2-3.\left(5t\right)^2}=\frac{120t^2}{15t^2}=8\)
Bài 3
a, \(|x+\frac{7}{3}|\ge|-3,5|\)
\(\Rightarrow|x+\frac{7}{3}|\ge3,5\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{7}{3}\ge3,5\\x+\frac{7}{3}\le-3,5\end{cases}\Rightarrow\orbr{\begin{cases}x\ge\frac{7}{6}\\x\le-\frac{35}{6}\end{cases}}}\)
Vậy .....
b,\(|x-1|\le3\frac{1}{4}\)
\(\Rightarrow|x-1|\le\frac{13}{4}\)\(\Rightarrow\orbr{\begin{cases}x-1\le\frac{13}{4}\\x-1\ge-\frac{13}{4}\end{cases}\Rightarrow\orbr{\begin{cases}x\le\frac{17}{4}\\x\ge-\frac{9}{4}\end{cases}}}\)
Vậy ....
Bài 4 :
Vì \(|2x-\frac{1}{3}|\ge0\forall x\Rightarrow|2x-\frac{1}{3}|-1\frac{3}{4}\ge-1\frac{3}{4}\)
Dấu "=" sảy ra <=> \(2x-\frac{1}{3}=0\Leftrightarrow2x=\frac{1}{3}\Leftrightarrow x=\frac{1}{6}\)
Vậy .....
Bài 5
B = \(\frac{1}{3+\frac{1}{2}.|2x-3|}=\frac{1}{3+|x-1,5|}\)
mà \(|x-1,5|\ge0\forall x\Rightarrow3+|x-1,5|\ge3\forall x\)
\(\Rightarrow B\le\frac{1}{3}\)
Dấu "=" sảy ra <=> x - 1,5= 0 <=> x = 1,5
Vậy .....
Học tốt
có bài nào hay ib mk ha
#Gấu
a, Ta có: \(\frac{a}{c}\)= \(\frac{c}{b}\)\(\Rightarrow\)\(ab\)= \(c^2\)
Để chứng minh \(\frac{a^2+c^2}{b^2+c^2}\)= \(\frac{a}{b}\)thì ta phải chứng minh b(a2+c2)=a(b2+c2)
Ta có: b(a2+c2)= b.a2+b.c2 (1)
Thay ab= c2 vào 1 ta có:
b.a2+b.a.b= b2.a+a2.bb
Ta có: a(b2+c2) = a.b2+a.c2 (2)
Thay ab= c2 vào (1) ta có:
a.b2+b.a.a= b2.a+a2.bb
Vì b2.a+a2.b= b2.a+a2.b \(\Rightarrow\)b(a2+c2)= a(b2+c2)
\(\Rightarrow\)\(\frac{a^2+c^2}{b^2+c^2}\)= \(\frac{a}{b}\)
\(\Rightarrow\)Đpcm (Điều phải chứng minh)
Chúc bn học tốt
a.
\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow c^2=ab\Rightarrow\frac{a^2+ab}{b^2+ab}=\frac{a.\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)
b.
\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow c^2=ab\Rightarrow\frac{\left(b^2-ab\right)+\left(ab-a^2\right)}{a\left(a+b\right)}=\frac{b\left(b-a\right)+a\left(b-a\right)}{a\left(a+b\right)}=\frac{b-a}{a}\)
a.Ta có $Oy, Oz$ cùng nằm trên nửa mặt phẳng có bờ là đường thẳng chứa tia $Ox$
$\widehat{xOy}=30^o,\widehat{xOz}=120^o\to \widehat{xOy}<\widehat{xOz}$
$\to Oy$ nằm giữa $Ox, Oz$
$\to \widehat{yOz}=\widehat{xOz}-\widehat{xOy}=90^o$
b.Ta có $Om,On$ là phân giác $\widehat{xOy},\widehat{xOz}$
$\to \widehat{xOm}=\dfrac12\widehat{xOy}=15^o,\widehat{xOn}=\dfrac12\widehat{xOz}=60^o$
$\to \widehat{mOn}=\widehat{xOn}-\widehat{xOm}=45^o$
Trả lời:
B nha
Nhớ k cho mk nhé
~HT~
= B nha
HT