Bài toán 3. Tìm 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài toán 1. So sánh: 200920 và 2009200910Bài toán 2. Tính tỉ số , biết: Bài toán 3. Tìm x; y biết:a. . 25 – y2 = 8( x – 2009)b. x3 y = x y3 + 1997c. x + y + 9 = xy – 7.Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.Bài toán 5. Chứng minh rằng:Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu...
Đọc tiếp

Bài toán 1. So sánh: 200920 và 2009200910

Bài toán 2. Tính tỉ số \frac{A}{B}, biết:

 Bài tập nâng cao Toán 7

Bài toán 3. Tìm x; y biết:

a. . 25 – y2 = 8( x – 2009)

b. xy = x y+ 1997

c. x + y + 9 = xy – 7.

Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.

Bài toán 5. Chứng minh rằng:

Bài tập nâng cao Toán 7

Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x)2005

Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.

Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.

Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.

Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).

Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.

Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.

5
21 tháng 9 2020

Bài 1: 

\(2009^{20}=\left(2009^2\right)^{10}=\left(2009.2009\right)^{10}\)

\(2009.2009^{10}=\left(10001.2009\right)^{10}\)

Ta thấy:

\(2009< 10001\Rightarrow2009.2009< 1001.2009\)

\(\Rightarrow\left(2009.2009\right)^{10}< \left(10001.2009\right)^{10}\)

\(\Rightarrow2009^{20}< 20092009^{10}\)

Bài 3: 

a) Vì \(x,y\in Z\Rightarrow25-y^2⋮8\Rightarrow25-y^2=\left\{0;8;16;24\right\}\)

\(\Rightarrow\hept{\begin{cases}y=\pm5\Rightarrow x=0\\y=\sqrt{17}\left(lo\text{ại}\right)\end{cases}}\)

\(\hept{\begin{cases}y=\pm3\Rightarrow x=2011\\y=\pm1\Rightarrow x=2012\end{cases}}\)

b) \(x^3y=xy^3+1997\)

\(\Leftrightarrow x^3y-xy^3=1997\)

\(\Leftrightarrow xy\left(x^2-y^2\right)=1997\)

\(\Leftrightarrow xy\left(x+y\right)\left(x-y\right)=1997\)

Ta có: 1997 là số nguyên tố; xy(x+y)(x-y) là hợp số

\(\Rightarrow\left(x;y\right)\in\varnothing\) 

c) \(x+y+9=xy-7\)

\(\Rightarrow x+y+16=xy\Rightarrow x+16=xy-y=y\left(x-1\right)\)

\(\Rightarrow y=\frac{x+16}{x-1}\left(x\ne1\right)\)

Mà do y thuộc Z\(\Rightarrow\frac{x+16}{x-1}\in Z\Rightarrow x+16⋮x-1\Rightarrow\left(x-1\right)+17⋮x-1\Rightarrow x-1\in\text{Ư}\left(17\right)=\left\{\pm1;\pm17\right\}\)

\(x\in\left\{0;2;-16;18\right\}\)(Thỏa mãn do khác 1)

+)  Nếu \(x=0\Rightarrow16+y=0\Rightarrow y=-16\)

+) Nếu \(x=2\Rightarrow18+y=2y\Rightarrow y=18\)

+) Nếu \(x=-16\Rightarrow y=-16y\Rightarrow y=0\)

+) Nếu \(x=18\Rightarrow y=2\)

Vậy \(\left(x;y\right)=\left(0,-16\right);\left(2;18\right);\left(-16;0\right);\left(18;2\right)\)

Bài 4:

n số \(x_1,x_2,x_3,....,x_n\)mỗi số nhận giá trị 1 hoặc -1

\(\Rightarrow\)n tích \(x_1.x_2+x_2.x_3+...+x_n.x_1\)mỗi tích bằng 1 hoặc -1

Mà: \(x_1.x_2+x_2.x_3+...+x_n.x_1=0\)

=> Số tích có giá trị bằng 1 hoặc -1 và bằng \(\frac{n}{2}\)

\(\Rightarrow n⋮2\)(n chẵn)

Xét \(A=\left(x_1.x_2\right).\left(x_2.x_3\right)....\left(x_n.x_1\right)\)

=> x12.x22....xn2=1>0

=> Số thừa số -1 là số chẵn

=>n/2 chẵn

=> n chia hết cho 4(đpcm)

21 tháng 9 2020

Bài 6:

Hướng dẫn: giả sử \(A\left(x\right)=a_o+a_1x+a_2x^2+...+a_{4018}x^{4018}\)

Khi đó A(1)\(=a_o+a_1+a_2+...+a_{4018}\)

do A(1) =0 nên \(a_o+a_1+a_2+...+a_{4018}=0\)

Bài 7:

Gợi ý: Đặt x=111.1( n chữ số 1)

Ta có: 10n=9x+1

=> a=x10n+x=x(9x+1)+x;b=10x+1;c=6x

Ta có: a+b+c+8=x(9x+1)+x+10x+1+6x+8=9x2+18x+9=(3x+3)2

Cách khác: Quy về dạng tổng quát : a=(102n-1):9,...

Bài 9:

- Những phân số lớn hơn a nhỏ hơn b có mẫu là 7 là:

\(a+\frac{1}{7};a+\frac{2}{7};a+\frac{3}{7};...;b-\frac{2}{7};b-\frac{1}{7}\)

Tổng của chúng là: \(A=\left(a+\frac{1}{7}\right)+\left(a+\frac{2}{7}\right)+...+\left(b-\frac{2}{7}\right)+\left(b-\frac{1}{7}\right)\)

\(=\frac{1}{7}\text{[}\left(7a+1\right)+\left(7a+2\right)+...+\left(7b-2\right)+\left(7b-1\right)\text{]}\)

\(=\frac{1}{7}.\frac{1}{2}\text{[}\left(7a+1\right)+\left(7b-1\right)\text{]}\text{[}\left(7b-1\right)-\left(7a+1\right)+1\text{]}\)

\(=\frac{1}{14}\left(7a+7b\right)\left(7b-7a-1\right)=\frac{1}{2}\left(a+b\right)\left(7b-7a-1\right)\)

- Những phân số lớn hơn a nhỏ hơn b sau khi rút gọn(vì 7 là số nguyên tố) là:

a+1;a+2;...;b-2;b-1

Tổng của chúng là: \(B=\left(a+1\right)+\left(a+2\right)+...+\left(b-2\right)+\left(b-1\right)\)

\(=\frac{1}{2}\text{[}\left(a+1\right)+\left(b-1\right)\text{]}\text{[}\left(b-1\right)-\left(a+1\right)+1\text{]}\)

\(=\frac{1}{2}\text{[}\left(a+b\right)\text{]}\text{[}b-a-1\text{]}\)

Tổng phải tìm là: \(A-B=\frac{1}{2}\left(a+b\right)\left(7b-7a-1\right)-\frac{1}{2}\text{[}\left(a+b\right)\text{]}\text{[}b-a-1\text{]}=3\left(a^2-b^2\right)\)

Bài 10:

Đặt \(n=2k-1\left(k\in N,k>1\right)\). Ta có:

\(A=1+3+5+...+\left(2k-1\right)=\frac{1+\left(2k-1\right)}{2}.k=k^2\)

Vậy A là số chính phương

 Bài toán 1. So sánh: 200920 và 2009200910Bài toán 2. Tính tỉ số , biết:Bài toán 3. Tìm x; y biết:a. . 25 – y2 = 8( x – 2009)b. x3 y = x y3  + 1997c. x + y + 9 = xy – 7.Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.Bài toán 5. Chứng minh rằng:Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ...
Đọc tiếp

 

Bài toán 1. So sánh: 200920 và 2009200910

Bài toán 2. Tính tỉ số \frac{A}{B}, biết:

Bài tập nâng cao Toán 7

Bài toán 3. Tìm x; y biết:

a. . 25 – y2 = 8( x – 2009)

b. xy = x y3  + 1997

c. x + y + 9 = xy – 7.

Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.

Bài toán 5. Chứng minh rằng:

Bài tập nâng cao Toán 7

Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x)2005

Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.

Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.

Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.

Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).

Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.

Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.

B. TOÁN NÂNG CAO LỚP 7 PHẦN HÌNH HỌC

Bài toán 13. Cho ΔABC vuông cân tại A, trung tuyến AM. Lấy E ∈ BC. BH, CK ⊥ AE (H, K ∈  AE). Chứng minh rằng Δ MHK vuông cân.

Bài toán 14. Cho ΔABC có góc ABC = 500; góc BAC = 700. Phân giác trong góc ACB cắt AB tại M. Trên MC lấy điểm N sao cho góc MBN = 400. Chứng minh rằng: BN = MC.

Bài toán 15. Cho ΔABC. Vẽ ra phía ngoài của tam giác này các tam giác vuông cân ở A là ABE và ACF. Vẽ AH ⊥ BC. Đường thẳng AH cắt EF tại O. Chứng minh rằng O là trung điểm của EF.

Bài toán 16. Cho ABC. Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC vẽ các đường thẳng song song với AB, AC chúng cắt xy theo thứ tự tại D và E. Chứng minh rằng:

a. ΔABC = ΔMDE

b. Ba đường thẳng AM, BD, CE cùng đi qua một điểm.

Bài toán 17. Cho ABC vuông tại A. Trên cạnh BC lấy hai điểm M và N sao cho BM = BA; CN = CA. Tính góc MAN

Bài toán 18. Cho đoạn thẳng MN = 4cm, điểm O nằm giữa M và N. Trên cùng một nửa mặt phẳng bờ MN vẽ các tam giác cân đỉnh O là OMA và OMB sao cho góc ở đỉnh O bằng 450. Tìm vị trí của O để AB min. Tính độ dài nhỏ nhất đó

THANG 100 DIEM 

0
20 tháng 5 2021

1a)

\(25-y^2=8\left(x-2009\right)\)

Vì \(25-y^2\le25\Rightarrow8\left(x-2009\right)\le25\)

\(\Leftrightarrow x-2009\le\frac{25}{8}\Rightarrow x\le2012,125\)

Từ đó thay các giá trị x thỏa mãn vào tìm được vô số y thỏa mãn

20 tháng 5 2021

b) \(x^3y=xy^3+1997\)

\(\Leftrightarrow x^3y-xy^3=1997\)

\(\Leftrightarrow xy\left(x^2-y^2\right)=1997\)

\(\Leftrightarrow xy\left(x-y\right)\left(x+y\right)=1997\)

Đến đây 1997 = 1.1997.1.1 rồi lập PT xét ước ra

Tìm ra x,y thôi

20 tháng 5 2021

1a) \(25-y^2\le25\Leftrightarrow8\left(x-2009\right)\le25\)

\(\Leftrightarrow x-2009\le\frac{25}{8}\Leftrightarrow x\le2012,125\)

Từ đó thế các giá trị của x thỏa mãn vào tìm được vô số các giá trị thỏa mãn của y

20 tháng 5 2021

b) \(x^3y=xy^3+1997\)

\(\Leftrightarrow x^3y-xy^3=1997\)

\(\Leftrightarrow xy\left(x^2-y^2\right)=1997\)

\(\Leftrightarrow xy\left(x-y\right)\left(x+y\right)=1997\)

Đến đây 1997 = 1.1997.1.1 rồi lập PT xét ước ra

Tìm ra x,y thôi

23 tháng 1 2022

Theo giả thiết suy ra các tích x1x2 , x2x3 , …., xnx1 chỉ nhận một trong hai giá trị là 1 và -1

Do đó x1x2 + x2x3 +…+ xnx1 = 0 <=> n = 2m

=> Đồng thời có m số hạng bằng 1 và m số hạng bằng -1

Nhận thấy : (x1x2)(x2x3)…(xnx1) = x12x22…xn2 = 1

=> Số các số hạng bằng -1 phải là số chẵn

=> m = 2k

Suy ra n = 2m = 2.2k = 4k

=> n chia hết cho 4

S1 =1+2+2^2+2^3+………………..+2^62+2^63

2S =2 (1+2+2^2+2^3+……………..+2^62+2^63)

2S =2+2^2+2^3+2^4+……………………….+2^63+2^64

2S-S = (2+2^2+2^3+2^4+……………….+2^63+2^64 ) – (1+2+2^2+2^3+…………………+2^62+2^63)

S1= 2^64-1

HT

2 tháng 9 2021

Bài này có thể giải bằng hai cách nhé!

Cách 1:

Ta thấy: S1 = 1 + 2 + 22 + 23 + … + 263 (1)

2S1 = 2 + 22 + 23 + … + 263 + 264 (2)

Trừ từng vế của (2) cho (1) ta có:

2S1 - S1 = 2 + 22 + 23 + … + 263 + 264 - (1 + 2 + 22 + 23 + … + 263)

= 264 - 1. Hay S1 = 264 - 1

Cách 2:

Ta có: S1 = 1 + 2 + 22 + 23 + … + 263 = 1 + 2(1 + 2 + 22 + 23 + … + 262) (1)

= 1 + 2(S1 - 263) = 1 + 2S1 - 264 S1 = 264 - 1

               ~ Hc tốt!!!