Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a) \(25-y^2=8\left(x-2009\right)\)
\(\Rightarrow25-y^2⋮8\Leftrightarrow y^2\equiv1\left(mod8\right)\Leftrightarrow y=2k+1,k\inℤ\)
\(25-\left(2k+1\right)^2=8\left(x-2009\right)\)
\(\Leftrightarrow x=2006-\frac{k^2+k}{2}\)
b) \(x^3y=xy^3+1997\)
\(\Leftrightarrow xy\left(x^2-y^2\right)=1997=1.1997\)
mà \(x,y\inℤ\)nên
\(\hept{\begin{cases}x^2-y^2=1\\xy=1997\end{cases}}\)hoặc \(\hept{\begin{cases}x^2-y^2=-1\\xy=-1997\end{cases}}\)
Cả hai hệ phương trình này đều không có nghiệm nguyên nên phương trình đã cho không có nghiệm nguyên.
c) \(x+y+9=xy-7\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=17\)
mà \(x,y\inℤ\)nên ta có bảng sau:
x-1 | 1 | 17 | -1 | -17 |
y-1 | 17 | 1 | -17 | -1 |
x | 2 | 18 | 0 | -16 |
y | 18 | 2 | -16 | 0 |
Bài 1:
\(2009^{20}=\left(2009^2\right)^{10}< \left(2009.10001\right)^{10}=20092009^{10}\)
Bài 2:
\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(=1+1+\frac{2007}{2}+1+\frac{2006}{3}+...1+\frac{2}{2007}+1+\frac{1}{2008}\)
\(=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)
\(=2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}+\frac{1}{2009}\right)\)
\(=2009A\)
\(\Rightarrow\frac{A}{B}=\frac{1}{2009}\)
Bài 1:
\(2009^{20}=\left(2009^2\right)^{10}=\left(2009.2009\right)^{10}\)
\(2009.2009^{10}=\left(10001.2009\right)^{10}\)
Ta thấy:
\(2009< 10001\Rightarrow2009.2009< 1001.2009\)
\(\Rightarrow\left(2009.2009\right)^{10}< \left(10001.2009\right)^{10}\)
\(\Rightarrow2009^{20}< 20092009^{10}\)
Bài 3:
a) Vì \(x,y\in Z\Rightarrow25-y^2⋮8\Rightarrow25-y^2=\left\{0;8;16;24\right\}\)
\(\Rightarrow\hept{\begin{cases}y=\pm5\Rightarrow x=0\\y=\sqrt{17}\left(lo\text{ại}\right)\end{cases}}\)
\(\hept{\begin{cases}y=\pm3\Rightarrow x=2011\\y=\pm1\Rightarrow x=2012\end{cases}}\)
b) \(x^3y=xy^3+1997\)
\(\Leftrightarrow x^3y-xy^3=1997\)
\(\Leftrightarrow xy\left(x^2-y^2\right)=1997\)
\(\Leftrightarrow xy\left(x+y\right)\left(x-y\right)=1997\)
Ta có: 1997 là số nguyên tố; xy(x+y)(x-y) là hợp số
\(\Rightarrow\left(x;y\right)\in\varnothing\)
c) \(x+y+9=xy-7\)
\(\Rightarrow x+y+16=xy\Rightarrow x+16=xy-y=y\left(x-1\right)\)
\(\Rightarrow y=\frac{x+16}{x-1}\left(x\ne1\right)\)
Mà do y thuộc Z\(\Rightarrow\frac{x+16}{x-1}\in Z\Rightarrow x+16⋮x-1\Rightarrow\left(x-1\right)+17⋮x-1\Rightarrow x-1\in\text{Ư}\left(17\right)=\left\{\pm1;\pm17\right\}\)
\(x\in\left\{0;2;-16;18\right\}\)(Thỏa mãn do khác 1)
+) Nếu \(x=0\Rightarrow16+y=0\Rightarrow y=-16\)
+) Nếu \(x=2\Rightarrow18+y=2y\Rightarrow y=18\)
+) Nếu \(x=-16\Rightarrow y=-16y\Rightarrow y=0\)
+) Nếu \(x=18\Rightarrow y=2\)
Vậy \(\left(x;y\right)=\left(0,-16\right);\left(2;18\right);\left(-16;0\right);\left(18;2\right)\)
Bài 4:
n số \(x_1,x_2,x_3,....,x_n\)mỗi số nhận giá trị 1 hoặc -1
\(\Rightarrow\)n tích \(x_1.x_2+x_2.x_3+...+x_n.x_1\)mỗi tích bằng 1 hoặc -1
Mà: \(x_1.x_2+x_2.x_3+...+x_n.x_1=0\)
=> Số tích có giá trị bằng 1 hoặc -1 và bằng \(\frac{n}{2}\)
\(\Rightarrow n⋮2\)(n chẵn)
Xét \(A=\left(x_1.x_2\right).\left(x_2.x_3\right)....\left(x_n.x_1\right)\)
=> x12.x22....xn2=1>0
=> Số thừa số -1 là số chẵn
=>n/2 chẵn
=> n chia hết cho 4(đpcm)
Bài 6:
Hướng dẫn: giả sử \(A\left(x\right)=a_o+a_1x+a_2x^2+...+a_{4018}x^{4018}\)
Khi đó A(1)\(=a_o+a_1+a_2+...+a_{4018}\)
do A(1) =0 nên \(a_o+a_1+a_2+...+a_{4018}=0\)
Bài 7:
Gợi ý: Đặt x=111.1( n chữ số 1)
Ta có: 10n=9x+1
=> a=x10n+x=x(9x+1)+x;b=10x+1;c=6x
Ta có: a+b+c+8=x(9x+1)+x+10x+1+6x+8=9x2+18x+9=(3x+3)2
Cách khác: Quy về dạng tổng quát : a=(102n-1):9,...
Bài 9:
- Những phân số lớn hơn a nhỏ hơn b có mẫu là 7 là:
\(a+\frac{1}{7};a+\frac{2}{7};a+\frac{3}{7};...;b-\frac{2}{7};b-\frac{1}{7}\)
Tổng của chúng là: \(A=\left(a+\frac{1}{7}\right)+\left(a+\frac{2}{7}\right)+...+\left(b-\frac{2}{7}\right)+\left(b-\frac{1}{7}\right)\)
\(=\frac{1}{7}\text{[}\left(7a+1\right)+\left(7a+2\right)+...+\left(7b-2\right)+\left(7b-1\right)\text{]}\)
\(=\frac{1}{7}.\frac{1}{2}\text{[}\left(7a+1\right)+\left(7b-1\right)\text{]}\text{[}\left(7b-1\right)-\left(7a+1\right)+1\text{]}\)
\(=\frac{1}{14}\left(7a+7b\right)\left(7b-7a-1\right)=\frac{1}{2}\left(a+b\right)\left(7b-7a-1\right)\)
- Những phân số lớn hơn a nhỏ hơn b sau khi rút gọn(vì 7 là số nguyên tố) là:
a+1;a+2;...;b-2;b-1
Tổng của chúng là: \(B=\left(a+1\right)+\left(a+2\right)+...+\left(b-2\right)+\left(b-1\right)\)
\(=\frac{1}{2}\text{[}\left(a+1\right)+\left(b-1\right)\text{]}\text{[}\left(b-1\right)-\left(a+1\right)+1\text{]}\)
\(=\frac{1}{2}\text{[}\left(a+b\right)\text{]}\text{[}b-a-1\text{]}\)
Tổng phải tìm là: \(A-B=\frac{1}{2}\left(a+b\right)\left(7b-7a-1\right)-\frac{1}{2}\text{[}\left(a+b\right)\text{]}\text{[}b-a-1\text{]}=3\left(a^2-b^2\right)\)
Bài 10:
Đặt \(n=2k-1\left(k\in N,k>1\right)\). Ta có:
\(A=1+3+5+...+\left(2k-1\right)=\frac{1+\left(2k-1\right)}{2}.k=k^2\)
Vậy A là số chính phương
Ta có :
200920 = (20092)10 = (2009.2009)10
2009200910 = (2009.10 001)10
Vì 2009.2009 < 2009. 10 001 nên 200920 < 2009200910
25 - y² = 8(x - 2009)²
ta có: VP = 8(x - 2009)² ≥ 0, VP chia hết cho 8 (do x,y thuộc Z)
VT = 25 - y² ≥ 25
→ TH1: 25 - y² = 0 → y = ± 5 → x = 2009 (thỏa mãn)
TH2: 25 - y² = 8 → y = ± √17 (loại)
TH3: 25 - y² = 16 → y = ± 3
→ (x - 2009)² = 2 → x - 2009 = ± √2 (loại)
TH4: 25 - y² = 24 → y = ± 1
→ (x - 2009)² = 3 → x - 2009 = ± √3 (loại)
Vậy x = 2009 và y = + 5
Mà x,y thuộc N (tập hợp số tự nhiên) nên
x = 2009 và y = 5
Câu 11: Tính: 3 1/4 + 2 1/6 - 1 1/4 - 4 5/6 = ?
A. -5/6 B. -2/3 C. 3/8 D. 3/2
Câu 12: Tìm n ϵ N, biết 2n+2 + 2n = 20, kết quả là:
A. n = 4 B. n = 1 C. n = 3 D. n = 2
Câu 13: Trong các số sau số nào là nghiệm thực của đa thức: P(x) = x2 –x - 6
A. 1 B. -2 C. 0 D. -6
Câu 14: Tìm n ϵ N, biết 4n/3n = 64/27, kết quả là:
A. n = 2 B. n = 3 C. n = 1 D. n = 0
Câu 15: Tính (155 : 55).(35 : 65)
A. 243/32 B. 39/32 C. 32/405 D. 503/32
Câu 17: Bộ ba nào trong số các bộ ba sau không phải là độ dài ba cạnh của tam giác.
A. 6cm; 8cm; 10cm B. 5cm; 7cm; 13cm C. 2,5cm; 3,5cm; 4,5cm D. 5cm; 5cm; 8cm
Câu 19: Giá trị có tần số lớn nhất được gọi là:
A. Mốt của dấu hiệuB. Tần số của giá trị đóC. Số trung bình cộngD. Số các giá trị của dấu hiệu
Câu 27: Trên mặt phẳng tọa độ Oxy lấy hai điểm: M (0; 4), N (3; 0). Diện tích của tam giác OMN là:
A. 12 (đvdt) B. 5 (đvdt) C. 6 (đvdt) D. 10 (đvdt)
Câu 28: Cho tam giác ABC vuông tại A, AB = 5cm, AC = 8cm. Độ dài cạnh BC là:
B. 12cm C. 10cm \(\sqrt{89}\)
Câu 29: Tìm các số a, b, c biết a : b : c = 4 : 7 : 9 và a + b – c = 10, ta có kết quả
A. a = 12; b = 21; c = 27 B. a = 2; C. a = 20; b = 35; c = 45 D. a = 40; b = 70; c = 90
a, Ta có: \(\frac{a}{c}\)= \(\frac{c}{b}\)\(\Rightarrow\)\(ab\)= \(c^2\)
Để chứng minh \(\frac{a^2+c^2}{b^2+c^2}\)= \(\frac{a}{b}\)thì ta phải chứng minh b(a2+c2)=a(b2+c2)
Ta có: b(a2+c2)= b.a2+b.c2 (1)
Thay ab= c2 vào 1 ta có:
b.a2+b.a.b= b2.a+a2.bb
Ta có: a(b2+c2) = a.b2+a.c2 (2)
Thay ab= c2 vào (1) ta có:
a.b2+b.a.a= b2.a+a2.bb
Vì b2.a+a2.b= b2.a+a2.b \(\Rightarrow\)b(a2+c2)= a(b2+c2)
\(\Rightarrow\)\(\frac{a^2+c^2}{b^2+c^2}\)= \(\frac{a}{b}\)
\(\Rightarrow\)Đpcm (Điều phải chứng minh)
Chúc bn học tốt
a.
\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow c^2=ab\Rightarrow\frac{a^2+ab}{b^2+ab}=\frac{a.\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)
b.
\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow c^2=ab\Rightarrow\frac{\left(b^2-ab\right)+\left(ab-a^2\right)}{a\left(a+b\right)}=\frac{b\left(b-a\right)+a\left(b-a\right)}{a\left(a+b\right)}=\frac{b-a}{a}\)
ta có :
\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
tương tự ta sẽ có : \(1< M< 2\) vậy M không phải số tự nhiên.
Bài 4.
a.ta có \(25-y^2\text{ chia hết cho 8 khi y là số lẻ}\)
vậy với mọi y lẻ thì đều thỏa mãn câu a
b. ta có :\(xy\left(x^2-y^2\right)=1997\Leftrightarrow xy\left(x-y\right)\left(x+y\right)=1997\)
vậy x,y phải là ước của 1997 mà 1997 là số nguyên tố nên : \(x,y\in\left\{-1997,-1,1,1997\right\}\)
thay lại không thỏa mãn
vậy pt không có nghiệm nguyên
c. ta có : \(\left(x-1\right)\left(y-1\right)=17\Rightarrow\orbr{\begin{cases}x-1=\pm1\\x-1=\pm17\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\text{ hoặc }\orbr{\begin{cases}x=-16\\x=18\end{cases}}\)
tương ứng ta có các cặp (xy) là (0,-16) (2,18), (-16,0), (18,2)