Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(x-2\right)^3+\frac{8}{27}=0\)
\(\Leftrightarrow\left(x-2\right)^3=\frac{-8}{27}\)
\(\Leftrightarrow\left(x-2\right)^3=\left(-\frac{2}{3}\right)^3\)
\(\Leftrightarrow x-2=\frac{-2}{3}\)
hay \(x=\frac{-2}{3}+2=\frac{4}{3}\)
Vậy: \(x=\frac{4}{3}\)
b) Ta có: \(4\frac{1}{3}:\frac{x}{4}=6:0,3\)
\(\Leftrightarrow\frac{13}{3}\cdot\frac{4}{x}=20\)
\(\Leftrightarrow\frac{4}{x}=20:\frac{13}{3}=20\cdot\frac{3}{13}=\frac{60}{13}\)
hay \(x=\frac{13\cdot4}{60}=\frac{13}{15}\)
Vậy: \(x=\frac{13}{15}\)
c) Ta có: \(\left(0,25-30\%x\right)\cdot\frac{1}{3}-\frac{1}{4}=5\frac{1}{6}\)
\(\Leftrightarrow\left(\frac{1}{4}-\frac{3x}{10}\right)\cdot\frac{1}{3}=\frac{31}{6}+\frac{1}{4}=\frac{65}{12}\)
\(\Leftrightarrow\frac{1}{4}-\frac{3x}{10}=\frac{65}{12}:\frac{1}{3}=\frac{65}{12}\cdot3=\frac{65}{4}\)
\(\Leftrightarrow\frac{3x}{10}=\frac{1}{4}-\frac{65}{4}=-16\)
\(\Leftrightarrow3x=-160\)
hay \(x=\frac{-160}{3}\)
Vậy: \(x=\frac{-160}{3}\)
d) Ta có: \(\frac{x-2}{-\frac{2}{9}}=\frac{-2}{x-2}\)
\(\Leftrightarrow\left(x-2\right)^2=-2\cdot\left(-\frac{2}{9}\right)=\frac{4}{9}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=\frac{2}{3}\\x-2=-\frac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}+2\\x=\frac{-2}{3}+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{8}{3}\\x=\frac{4}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{8}{3};\frac{4}{3}\right\}\)
a/ (x - 2)3 + \(\frac{8}{27}\) = 0
=> (x - 2)3 = 0 - \(\frac{8}{27}\) = \(\frac{-8}{27}\)
=> x - 2 = \(-\frac{2}{3}\)
=> x = \(-\frac{2}{3}+2=\frac{4}{3}\)
b/ \(4\frac{1}{3}:\frac{x}{4}=6:0,3\)
=> \(4\frac{1}{3}:\frac{x}{4}=6:\frac{3}{10}=6.\frac{10}{3}=20\)
=> \(\frac{x}{4}=4\frac{1}{3}:20=\frac{13}{3}.\frac{1}{20}=\frac{13}{60}\)
=> \(x=\frac{13}{60}.4=\frac{13}{15}\)
c/ \(\left(0,25-30\%x\right).\frac{1}{3}-\frac{1}{4}=5\frac{1}{6}\)
=> \(\left(0,25-30\%x\right).\frac{1}{3}=5\frac{1}{6}+\frac{1}{4}=\frac{65}{12}\)
=> \(0,25-\frac{30}{100}x=\frac{65}{12}:\frac{1}{3}=\frac{65}{12}.3=\frac{65}{4}\)
=> \(\frac{3}{10}x=0,25-\frac{65}{4}=\frac{1}{4}-\frac{65}{4}=-\frac{64}{4}=-16\)
=> \(x=-16:\frac{3}{10}=-16.\frac{10}{3}=-\frac{160}{3}\)
a,(5/8/17+-4/17):x+33/182=4/11
=5/4/17:x+33/182=4/11
5/4/17:x=4/11-33/182
5/4/17:x=365/2002
x=5/4/17:365/2002
x=28/4438/6205
b,-1/5/27-(3x-7/9)^3=-24/27
(3x-7/9)^3=-1/5/27--24/27
(3x-7/9)^3=-8/27
(3x-7/9)^3=(-2/3)^3
3x-7/9=-2/3
3x=-2/3+7/9
3x=1/9
x=1/9:3
x=1/27
a)\(\frac{x+32}{11}+\frac{x+23}{12}=\frac{x+38}{13}+\frac{x+27}{14}\)
\(\left(\frac{x-1}{11}+3\right)+\left(\frac{x-1}{12}+2\right)=\left(\frac{x-1}{13}+3\right)+\left(\frac{x-1}{14}+2\right)\)
\(\left(\frac{x-1}{11}+\frac{x-1}{12}\right)+\left(3+2\right)=\left(\frac{x-1}{13}+\frac{x-1}{14}\right)+\left(3+2\right)\)
\(\frac{x-1}{11}+\frac{x-1}{12}=\frac{x-1}{13}+\frac{x-1}{14}\)
\(\frac{x-1}{11}+\frac{x-1}{12}-\frac{x-1}{13}+\frac{x-1}{14}=0\)
\(\left(x-1\right)\left(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)
Vì \(\frac{1}{11}+\frac{1}{12}\ne\frac{1}{13}+\frac{1}{14}\)\(\Rightarrow\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\ne0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
a) \(\left(3\frac{1}{2}-2x\right).1\frac{1}{3}=7\frac{1}{3}\)
\(\Leftrightarrow\)\(3\frac{1}{2}-2x=7\frac{1}{3}:1\frac{1}{3}=\frac{11}{2}\)
\(\Leftrightarrow\)\(2x=3\frac{1}{2}-\frac{11}{2}=-2\)
\(\Leftrightarrow\)\(x=-1\)
Vậy....
\(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\\ \left(x+\frac{1}{5}\right)^2=\frac{26}{25}-\frac{17}{25}\\ \left(x+\frac{1}{5}\right)^2=\frac{9}{25}\\ \left|\left(x+\frac{1}{5}\right)\right|=\frac{3}{5}\)
TH1: \(x=\frac{3}{5}-\frac{1}{5}\\ x=\frac{2}{5}\)
TH2: \(\left|\left(x+\frac{1}{5}\right)\right|=-\frac{3}{5}\\ x=-\frac{3}{5}-\frac{1}{5}\\ x=-\frac{4}{5}\)
\(a,\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
\(\Rightarrow\left(x+\frac{1}{5}\right)^2=\frac{9}{25}\)
\(\Rightarrow\left(x+\frac{1}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(\Rightarrow x+\frac{1}{5}=\frac{3}{5}\)
\(\Rightarrow x=\frac{2}{5}\)
\(b,-1\frac{5}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
\(\Rightarrow-\frac{32}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
\(\Rightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{32}{27}+\frac{24}{27}\)
\(\Rightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{8}{27}\)
\(\Rightarrow\left(3x-\frac{7}{9}\right)^3=\left(-\frac{2}{3}\right)^3\)
\(\Rightarrow3x-\frac{7}{9}=-\frac{2}{3}\)
\(\Rightarrow3x=-\frac{2}{3}+\frac{7}{9}\)
\(\Rightarrow3x=\frac{1}{9}\)
\(\Rightarrow x=\frac{1}{27}\)
\(c,\left(x+\frac{1}{2}\right)\left(\frac{2}{3}-2x\right)=0\)
\(\Rightarrow\) \(\left[\begin{array}{nghiempt}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{array}\right.\) \(\Rightarrow\) \(\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\2x=\frac{2}{3}\end{array}\right.\) \(\Rightarrow\) \(\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=\frac{1}{3}\end{array}\right.\)
mik ko chép lại đề, mik làm luôn:
a) x - \(\frac{31}{36}=\frac{-13}{38}\)
x = \(\frac{-13}{18}+\frac{31}{36}\)
\(x=\frac{5}{36}\)
b)\(2-x-\frac{3}{7}=\frac{9}{-21}\)
\(\frac{11}{7}-x=\frac{3}{7}\)
x = \(\frac{11}{7}-\frac{3}{7}\)
x = 8/7
c) x + 3/11 = 23/44
x = 23/44 - 3/11
x = 1/4
d) \(\frac{1}{12}-x=\frac{-11}{9}\)
x = \(\frac{1}{12}+\frac{11}{9}\)
x = 47/36
e) \(x-\frac{2}{3}=\frac{-17}{3}\)
x= -17/3 + 2/3
x = -5
f) \(x-\frac{1}{2}=\frac{11}{4}.\frac{3}{11}\)
x - 1/2 = 3/4
x = 3/4 + 1/2
x = 5/4
g) \(2x+\frac{3}{8}=\frac{-21}{32}.\frac{4}{7}\)
2x + 3/8 = -3 / 8
2x = -3/8 - 3/8
2x = -9/8
x = -9/8.1/2
x = -9/16
h) x - \(\frac{x}{3}=\frac{3}{57}.\frac{19}{12}\)
x - \(\frac{x}{3}=\frac{1}{12}\)
x = \(\frac{1}{12}+\frac{x}{3}\)
x = \(\frac{1+4x}{12}\)
=> 12x = 1+4x
12x - 4x = 1
8x = 1
x = 1/8
a) \(x^3-\frac{1}{9}x=0\)
\(\Rightarrow x\left(x^2-\frac{1}{9}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-\frac{1}{9}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^2=\left(\frac{1}{3}\right)^2\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=\pm\frac{1}{3}\end{cases}}}\)
Vậy \(x\in\left\{0;\frac{1}{3;};-\frac{1}{3}\right\}\)
b) \(x.x^4=\frac{1}{32}.\frac{1}{27}\)
\(\Rightarrow x^5=\frac{1}{864}\)
\(\Rightarrow x\in\varnothing\)