K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Phân tích đa thức thành nhân tử:a. x2 – x – 6b. x4 + 4x2 – 5c. x3 – 19x – 302. Phân tích thành nhân tử:a. A = ab(a – b) + b(b – c) + ca(c – a)b. B = a(b2 – c2) + b(c2 – a2) + c(a2 – b2)c. C = (a + b + c)3 – a3 – b3 – c33. Phân tích thành nhân tử:a. (1 + x2)2 – 4x (1 – x2)b. (x2 – 8)2 + 36c. 81x4 + 4d. x5 + x + 14. a. Chứng minh rằng: n5 – 5n3 + 4n chia hết cho 120 với mọi số nguyên n.b. Chứng minh...
Đọc tiếp

1. Phân tích đa thức thành nhân tử:

a. x2 – x – 6

b. x4 + 4x2 – 5

c. x3 – 19x – 30

2. Phân tích thành nhân tử:

a. A = ab(a – b) + b(b – c) + ca(c – a)

b. B = a(b2 – c2) + b(c2 – a2) + c(a2 – b2)

c. C = (a + b + c)3 – a3 – b3 – c3

3. Phân tích thành nhân tử:

a. (1 + x2)2 – 4x (1 – x2)

b. (x2 – 8)2 + 36

c. 81x4 + 4

d. x5 + x + 1

4. a. Chứng minh rằng: n5 – 5n3 + 4n chia hết cho 120 với mọi số nguyên n.

b. Chứng minh rằng: n3 – 3n2 – n + 3 chia hết cho 48 với mọi số lẻ n.

5. Phân tích các đa thức sau đây thành nhân tử

a. a3 – 7a – 6

b. a3 + 4a2 – 7a – 10

c. a(b + c)2 + b(c + a)2 + c(a + b)2 – 4abc

d. (a2 + a)2 + 4(a2 + a) – 12

e. (x2 + x + 1) (x2 + x + 2) – 12

f. x8 + x + 1

g. x10 + x5 + 1

6. Chứng minh rằng với mọi số tự nhiên lẻ n:

a. n2 + 4n + 8 chia hết cho 8

b. n3 + 3n2 – n – 3 chia hết cho 48

7. Tìm tất cả các số tự nhiên n để :

a. n4 + 4 là số nguyên tố

b. n1994 + n1993 + 1 là số nguyên tố

8. Tìm nghiệm nguyên của phương trình:

a. x + y = xy

b. p(x + y) = xy với p nguyên tố

c. 5xy – 2y2 – 2x2 + 2 = 0

2
5 tháng 7 2018

Bài 2:

a)  \(A=ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

\(=\left(a-b\right)\left(c-a\right)\left(c-b\right)\)

b)  \(B=a\left(b^2-c^2\right)+b^2\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)

\(=\left(b-a\right)\left(c-a\right)\left(c-b\right)\)

c)  \(C=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

p/s: từ sau bn đăng 1-2 bài thôi nhé, nhiều thế này người lm bài cx hơi bất tiện để đọc đề

      còn mấy câu nữa bn đăng lại nhé

5 tháng 7 2018

Bài 1: 

a)  \(x^2-x-6=\left(x-3\right)\left(x+2\right)\)

b)   \(x^4+4x^2-5=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)

c)  \(x^3-19x-30=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)

1. Phân tích đa thức thành nhân tử:a. x2 – x – 6b. x4 + 4x2 – 5c. x3 – 19x – 302. Phân tích thành nhân tử:a. A = ab(a – b) + b(b – c) + ca(c – a)b. B = a(b2 – c2) + b(c2 – a2) + c(a2 – b2)c. C = (a + b + c)3 – a3 – b3 – c33. Phân tích thành nhân tử:a. (1 + x2)2 – 4x (1 – x2)b. (x2 – 8)2 + 36c. 81x4 + 4d. x5 + x + 14. a. Chứng minh rằng: n5 – 5n3 + 4n chia hết cho 120 với mọi số nguyên n.b. Chứng minh...
Đọc tiếp

1. Phân tích đa thức thành nhân tử:

a. x2 – x – 6

b. x4 + 4x2 – 5

c. x3 – 19x – 30

2. Phân tích thành nhân tử:

a. A = ab(a – b) + b(b – c) + ca(c – a)

b. B = a(b2 – c2) + b(c2 – a2) + c(a2 – b2)

c. C = (a + b + c)3 – a3 – b3 – c3

3. Phân tích thành nhân tử:

a. (1 + x2)2 – 4x (1 – x2)

b. (x2 – 8)2 + 36

c. 81x4 + 4

d. x5 + x + 1

4. a. Chứng minh rằng: n5 – 5n3 + 4n chia hết cho 120 với mọi số nguyên n.

b. Chứng minh rằng: n3 – 3n2 – n + 3 chia hết cho 48 với mọi số lẻ n.

5. Phân tích các đa thức sau đây thành nhân tử

a. a3 – 7a – 6

b. a3 + 4a2 – 7a – 10

c. a(b + c)2 + b(c + a)2 + c(a + b)2 – 4abc

d. (a2 + a)2 + 4(a2 + a) – 12

e. (x2 + x + 1) (x2 + x + 2) – 12

f. x8 + x + 1

g. x10 + x5 + 1

6. Chứng minh rằng với mọi số tự nhiên lẻ n:

a. n2 + 4n + 8 chia hết cho 8

b. n3 + 3n2 – n – 3 chia hết cho 48

7. Tìm tất cả các số tự nhiên n để :

a. n4 + 4 là số nguyên tố

b. n1994 + n1993 + 1 là số nguyên tố

8. Tìm nghiệm nguyên của phương trình:

a. x + y = xy

b. p(x + y) = xy với p nguyên tố

c. 5xy – 2y2 – 2x2 + 2 = 0

1
15 tháng 7 2018

a) Ta có: \(x^2-x-6\)

\(=x^2-x-9+3\)

\(=\left(x^2-9\right)-\left(x-3\right)\)

\(=\left(x-3\right)\left(x+3\right)-\left(x-3\right)\)

\(=\left(x-3\right)\left(x+2\right)\)

b) Sử dụng phương pháp Hệ số bất định

22 tháng 6 2017

1. (a - b + c - d).(a - b + c - d)
= (a - b + c - d)2

Câu 1 vậy là gọn nhé

2.
a) x2 - 10xy + 25y2
= x- 2x5y + (5y)2
= (x - 5y)2
b) 16a4 + 8a2b3 + b6
= (4a2)2 + 2.4a2.b3 + (b3)2
= (4a2 + b3)2
c) a4 - 1
= (a2)2 - 1
= (a2 - 1)(a2 + 1)
= (a - 1)(a + 1)(a2 + 1)
d) 16a4 - 81b4
= (4a2)2 - (9b2)2
= (4a2 - 9b2)(4a2 + 9b2)
= [(2a)2 - (3b)2](4a2 + 9b2)
= (2a - 3b)(2a + 3b)(4a2 + 9b2)
e) (a4 - 2a2b + b2) - b4
= [(a2)2 - 2a2b + b2] - (b2)2
= (a2 - b)2 - (b2)2
= (a2 - b - b2)(a2 - b + b2)
= [(a - b)(a + b) - b](a2 - b + b2)
f) 81x4 - (b2 - 2b + 1)
= (9x2)2 - (b - 1)2
= (9x2 - b + 1)(9x2 + b - 1)
 

30 tháng 9 2018

a) x ( x +1 ) + ( x - 5 ) - 5( x +1 )2

=( x +1 )2.(x-5)2

=( (x +1)+(x-5)).((x +1)-(x-5))

30 tháng 9 2018

a) x ( x +1 ) + ( x - 5 ) - 5( x +1 )2

= ( x + 1 )2 ( x - 5 ) + ( x - 5 )

= ( x - 5 ) ( x2 + 2x + 1 +1 )

= ( x - 5 ) ( x2 + 2x + 2 )

b) 3x- 12y

= 3 ( x2 - 4y2 )

= 3 ( x -2y ) (x + 2y )

c) x3 + 3x+ 3x +1 - 27z3

= ( x + 1 )3 - (3z )3

= ( x + 1 - 3z ) [ ( x + 1 )2 + 3z ( x + 1 ) +9z2 ]

= ( x + 1 - 3z) [(  x + 1 ) 2 + 3xz + 3z + 9z2  ]

19 tháng 9 2018

Đăng từng bài thui bn êi ~.~ 

\(h)\)\(\left(xy+1\right)^2-\left(x+y\right)^2\)

\(=\)\(\left(xy-x-y+1\right)\left(xy+x+y+1\right)\)

\(=\)\(\left[x\left(y-1\right)-\left(y-1\right)\right].\left[x\left(y+1\right)+\left(y+1\right)\right]\)

\(=\)\(\left(x-1\right)\left(y-1\right)\left(x+1\right)\left(y+1\right)\)

\(i)\)\(16b^2c^2-4\left(b^2+c^2-a^2\right)^2\)

\(=\)\(\left(4bc\right)^2-\left(2b^2+2c^2-2a^2\right)^2\)

\(=\)\(\left(4bc-2b^2-2c^2+2a^2\right)\left(4bc+2b^2+2c^2-2a^2\right)\)

\(=\)\(2\left[a^2-\left(b^2-2bc+c^2\right)\right].2\left[\left(b^2+2bc+c^2\right)-a^2\right]\)

\(=\)\(-4\left[a^2-\left(b-c\right)^2\right].\left[a^2-\left(b+c\right)^2\right]\)

\(=\)\(-4\left(a-b+c\right)\left(a+b-c\right)\left(a-b-c\right)\left(a+b+c\right)\)

Chúc bạn học tốt ~ 

19 tháng 9 2018

Lười ._. Đăng luôn zợ cho nhanh =^=

23 tháng 7 2019

#)Giải :

a) \(ab-ac-b+c=a\left(b-c\right)-\left(b-c\right)=\left(a-1\right)\left(b-c\right)\)

b) \(5a^2-5=5\left(a^2-1\right)=5\left(a-1\right)\left(a+1\right)\)

c) \(x^2-2x+1-a^2-2ab-b^2=\left(x-1\right)^2-\left(a+b\right)^2\)

\(=\left(x-1-a-b\right)\left(x-1+a+b\right)\)

d) \(7x^2-14x+7=7\left(x^2-2x+1\right)=7\left(x-1\right)^2\)

e) \(81x^4+4=81x^4+36x^2+4-36x^2=\left(9x^2+6x+2\right)\left(9x^2-6x+2\right)\)

f) \(x^7+x^2+1=\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+...+\left(x^2+x+1\right)\)

\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+...+\left(x^2+x+1\right)\)

\(=\left(x^5-x^4+x^2-x+1\right)\left(x^2+x+1\right)\)

g) \(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)

\(=\left(a+b\right)\left(a^2-b^2\right)-\left(b+c\right)\left(a^2-b^2+c^2-a^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(a+b\right)-\left(a-b\right)\left(a-c\right)\left(a+c\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)