Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) \(A=ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=\left(a-b\right)\left(c-a\right)\left(c-b\right)\)
b) \(B=a\left(b^2-c^2\right)+b^2\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)
\(=\left(b-a\right)\left(c-a\right)\left(c-b\right)\)
c) \(C=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
p/s: từ sau bn đăng 1-2 bài thôi nhé, nhiều thế này người lm bài cx hơi bất tiện để đọc đề
còn mấy câu nữa bn đăng lại nhé
a) Ta có: \(x^2-x-6\)
\(=x^2-x-9+3\)
\(=\left(x^2-9\right)-\left(x-3\right)\)
\(=\left(x-3\right)\left(x+3\right)-\left(x-3\right)\)
\(=\left(x-3\right)\left(x+2\right)\)
b) Sử dụng phương pháp Hệ số bất định
1. (a - b + c - d).(a - b + c - d)
= (a - b + c - d)2
Câu 1 vậy là gọn nhé
2.
a) x2 - 10xy + 25y2
= x2 - 2x5y + (5y)2
= (x - 5y)2
b) 16a4 + 8a2b3 + b6
= (4a2)2 + 2.4a2.b3 + (b3)2
= (4a2 + b3)2
c) a4 - 1
= (a2)2 - 1
= (a2 - 1)(a2 + 1)
= (a - 1)(a + 1)(a2 + 1)
d) 16a4 - 81b4
= (4a2)2 - (9b2)2
= (4a2 - 9b2)(4a2 + 9b2)
= [(2a)2 - (3b)2](4a2 + 9b2)
= (2a - 3b)(2a + 3b)(4a2 + 9b2)
e) (a4 - 2a2b + b2) - b4
= [(a2)2 - 2a2b + b2] - (b2)2
= (a2 - b)2 - (b2)2
= (a2 - b - b2)(a2 - b + b2)
= [(a - b)(a + b) - b](a2 - b + b2)
f) 81x4 - (b2 - 2b + 1)
= (9x2)2 - (b - 1)2
= (9x2 - b + 1)(9x2 + b - 1)
a) x ( x +1 ) 2 + ( x - 5 ) - 5( x +1 )2
=( x +1 )2.(x-5)2
=( (x +1)+(x-5)).((x +1)-(x-5))
a) x ( x +1 ) 2 + ( x - 5 ) - 5( x +1 )2
= ( x + 1 )2 ( x - 5 ) + ( x - 5 )
= ( x - 5 ) ( x2 + 2x + 1 +1 )
= ( x - 5 ) ( x2 + 2x + 2 )
b) 3x2 - 12y2
= 3 ( x2 - 4y2 )
= 3 ( x -2y ) (x + 2y )
c) x3 + 3x2 + 3x +1 - 27z3
= ( x + 1 )3 - (3z )3
= ( x + 1 - 3z ) [ ( x + 1 )2 + 3z ( x + 1 ) +9z2 ]
= ( x + 1 - 3z) [( x + 1 ) 2 + 3xz + 3z + 9z2 ]
Đăng từng bài thui bn êi ~.~
\(h)\)\(\left(xy+1\right)^2-\left(x+y\right)^2\)
\(=\)\(\left(xy-x-y+1\right)\left(xy+x+y+1\right)\)
\(=\)\(\left[x\left(y-1\right)-\left(y-1\right)\right].\left[x\left(y+1\right)+\left(y+1\right)\right]\)
\(=\)\(\left(x-1\right)\left(y-1\right)\left(x+1\right)\left(y+1\right)\)
\(i)\)\(16b^2c^2-4\left(b^2+c^2-a^2\right)^2\)
\(=\)\(\left(4bc\right)^2-\left(2b^2+2c^2-2a^2\right)^2\)
\(=\)\(\left(4bc-2b^2-2c^2+2a^2\right)\left(4bc+2b^2+2c^2-2a^2\right)\)
\(=\)\(2\left[a^2-\left(b^2-2bc+c^2\right)\right].2\left[\left(b^2+2bc+c^2\right)-a^2\right]\)
\(=\)\(-4\left[a^2-\left(b-c\right)^2\right].\left[a^2-\left(b+c\right)^2\right]\)
\(=\)\(-4\left(a-b+c\right)\left(a+b-c\right)\left(a-b-c\right)\left(a+b+c\right)\)
Chúc bạn học tốt ~
#)Giải :
a) \(ab-ac-b+c=a\left(b-c\right)-\left(b-c\right)=\left(a-1\right)\left(b-c\right)\)
b) \(5a^2-5=5\left(a^2-1\right)=5\left(a-1\right)\left(a+1\right)\)
c) \(x^2-2x+1-a^2-2ab-b^2=\left(x-1\right)^2-\left(a+b\right)^2\)
\(=\left(x-1-a-b\right)\left(x-1+a+b\right)\)
d) \(7x^2-14x+7=7\left(x^2-2x+1\right)=7\left(x-1\right)^2\)
e) \(81x^4+4=81x^4+36x^2+4-36x^2=\left(9x^2+6x+2\right)\left(9x^2-6x+2\right)\)
f) \(x^7+x^2+1=\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+...+\left(x^2+x+1\right)\)
\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+...+\left(x^2+x+1\right)\)
\(=\left(x^5-x^4+x^2-x+1\right)\left(x^2+x+1\right)\)
g) \(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
\(=\left(a+b\right)\left(a^2-b^2\right)-\left(b+c\right)\left(a^2-b^2+c^2-a^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(a+b\right)-\left(a-b\right)\left(a-c\right)\left(a+c\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)