Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
â. (A+B)2 = A2+2AB+B2
b. A2 – B2= (A-B)(A+B)
c. (A – B)2= A2 – 2AB+ B2
d. A3 + B3= (A+B)(A2- AB +B2)
e. cái này bạn phải chú ý cách sắp xếp mà sx nó lại \(x^6-2x^3y+y^2\) (A – B)2= A2 – 2AB+ B2
f. (A+B)3= A3+3A2B +3AB2+B3
a) x2+6xy+9y2 = x2+2.x.3y+(3y)2 = (x+3y)2
b) x2-\(\dfrac{1}{4}\)= x2- (\(\dfrac{1}{2}\))2 = (x-\(\dfrac{1}{2}\))(x+\(\dfrac{1}{2}\))
c) x2 -10x+25 = x2 -2.x.5+52 = (x-5)2
d) 8x3+27y3 = (2x)3+(3y)3 = (2x+3y)[(2x)2 -2x.3y+(3y)2]
e) x6 +y2 -2x3y = x6-2x3y +y2 = (x3)2 -2x3y +y2 = (x3 -y)2
f) x3 +9x2y +27xy2 +27y3 = x3 +3.x2.3y +3.x.(3y)2 +(3y)3 = (x+3y)3
=> x3 - x2 - 6x2 + 6x + 6x - 6 = 0
=> x2(x - 1) - 6x(x - 1) + 6(x - 1) = 0
=> (x - 1)(x2 - 6x + 6) = 0
=> x - 1 = 0 hoặc x2 - 6x + 6 = 0
=> x = 1 hoặc x2 - 6x + 6 = 0
Ta có: x2 - 6x + 6 = x2 - 2.x.3 + 9 - 9 + 6
= (x -3)2 - 3 lớn hơn hoặc bằng - 3
=> x2 - 6x + 6 >0
=> x= 1. Vậy x = 1
Bài 1:
a) Ta có: \(4x^2-6x\)
\(=2x\cdot2x-2x\cdot3\)
\(=2x\left(2x-3\right)\)
b) Ta có: \(9x^4y^3+3x^2y^4\)
\(=3x^2y^3\cdot3x^2+3x^2y^3\cdot y\)
\(=3x^2y^3\left(3x^2+y\right)\)
c) Ta có: \(x^3-2x^2+5x\)
\(=x\cdot x^2-x\cdot2x+5\cdot x\)
\(=x\left(x^2-2x+5\right)\)
d) Ta có: \(3x\left(x-1\right)+5\left(x-1\right)\)
\(=3x\cdot\left(x-1\right)+5\cdot\left(x-1\right)\)
\(=\left(x-1\right)\left(3x+5\right)\)
e) Ta có: \(2x^2\left(x+1\right)+4\left(x+1\right)\)
\(=2\cdot\left(x+1\right)\cdot x^2+2\cdot\left(x+1\right)\cdot2\)
\(=2\left(x+1\right)\cdot\left(x^2+2\right)\)
f) Ta có: \(-3x+6xy+9xz\)
\(=9xz+6xy-3x\)
\(=3x\cdot3z+3x\cdot2y-3x\cdot1\)
\(=3x\left(3z+2y-1\right)\)
Bài 2:
a)Xét hình thang ABCD(AB//CD) có
E là trung điểm của AD(gt)
F là trung điểm của BC(gt)
Do đó: EF là đường trung bình của hình thang ABCD(Định nghĩa đường trung bình của hình thang)
⇒EF//AB//CD và \(EF=\frac{AB+CD}{2}\)(Định lí 4 về đường trung bình của hình thang)
Xét ΔADC có
E là trung điểm của AD(gt)
EK//DC(EF//DC, K∈EF)
Do đó: K là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
⇒AK=KC(đpcm)
b) Xét ΔADC có
E là trung điểm của AD(gt)
K là trung điểm của AC(cmt)
Do đó: EK là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)
⇒\(EK=\frac{DC}{2}\)(Định lí 2 về đường trung bình của tam giác)
⇒\(EK=\frac{10}{2}=5cm\)
Ta có: \(EF=\frac{AB+DC}{2}\)(cmt)
nên \(EF=\frac{4+10}{2}=7cm\)
Ta có: K nằm giữa E và F(E,K,F thẳng hàng)
nên EK+KF=EF
⇒KF=EF-EK=7-5=2cm
Vậy: EK=5cm; KF=2cm
a. \(\frac{5x-2}{3}=\frac{5x-3x}{2}\)
\(\Leftrightarrow2.\left(5x-2\right)=3.\left(5x-3x\right)
\)
\(\Leftrightarrow10x-4=15x-9x\)
\(\Leftrightarrow4x=4\)
\(\Leftrightarrow x=1\)
Vậy...
b. \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\left(1\right)\)
MC = 36.
pt (1) <=>
\(\frac{3\left(10x+3\right)}{36}=\frac{36}{36}+\frac{4\left(6+8x\right)}{36}\)
=> 3.(10x+3) = 36 + 4(6+8x)
<=> 30x+9 = 36+24+32x
<=> -2x = 51
<=> x = \(\frac{-51}{2}\)
Vậy...
c. \(\frac{7x-1}{6}+2=\frac{16-x}{5}\left(2\right)\)
MC = 30.
pt (2) <=>
\(\frac{5\left(7x-1\right)}{30}+\frac{60x}{30}=\frac{6\left(16-x\right)}{30}\)
=> 5(7x-1) + 60x = 6(16-x)
<=> 35x-5 + 60x = 96-6x
<=> 101x = 101
<=> x = 1
Vậy...
d. \(\frac{3x+2}{2}-\frac{3x+1}{6}=5\) (3)
MC = 12.
pt (3)<=>
\(\frac{6\left(3x+2\right)}{12}-\frac{2\left(3x+1\right)}{12}=\frac{60}{12}\)
=> 6(3x+2) - 2(3x+1) = 60
<=> 18x+12 - 6x-2 = 60
<=> 12x = 50
<=> x = \(\frac{25}{6}\)
Vậy...
e. \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\) (4)
MC = 30.
pt (4) <=>
\(\frac{6\left(x+4\right)}{30}-\frac{30x}{30}+\frac{120}{30}=\frac{10x}{30}-\frac{15\left(x-2\right)}{30}\)
=> 6(x+4) - 30x + 120 = 10x - 15(x-2)
<=> 6x+24 - 30x + 120 = 10x - 15x+30
<=> -19x = -114
<=> x = \(\frac{114}{19}=6\)
Vậy...
\(x^2-6x+8=x^2-6x+9-1\\ =\left(x-3\right)^2-1\\ =\left(x-3+1\right)\left(x-3-1\right)=\left(x-2\right)\left(x-4\right)\)
b)
\(4x^2-7x+3=4x^2-4x-3x+3\\ =4x\left(x-1\right)-3\left(x-1\right)\\ =\left(x-1\right)\left(4x-3\right)\)
c)
\(\left(3x-1\right)^2-\left(2x-3\right)^2=\left(3x-1+2x-3\right)\left(3x-1-2x+3\right)\\ =\left(5x-4\right)\left(x+2\right)\)
Well, it's ez, right? Hướng dẫn thôi nhé :> (*gớm, xài brain nhiều vào :V*)
a, ĐKXĐ: \(x\notin\left\{-1;3\right\}\)
\(\frac{x}{2x+2}-\frac{2x}{x^2-2x-3}=\frac{x}{6-2x}\\ \Leftrightarrow\frac{x}{2\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=\frac{x}{-2\left(x-3\right)}\\ \Leftrightarrow\frac{x\left(x-3\right)-4x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{-x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}\Leftrightarrow...\)
Đến đây khử mẫu, giải PT và xét nghiệm với ĐKXĐ nhé (cứ thấy linh tinh với ĐKXĐ là cho outplay lun :>)
b, ĐKXĐ: \(x\notin\left\{2;3\right\}\)
\(\frac{5}{-x^2+5x-6}+\frac{x+3}{2-x}=0\\ \Leftrightarrow\frac{-5}{-\left(x-2\right)\left(x-3\right)}+\frac{x+3}{2-x}=0\\\Leftrightarrow\frac{-5}{\left(2-x\right)\left(x-3\right)}=\frac{-\left(x+3\right)\left(x-3\right)}{\left(2-x\right)\left(x-3\right)}\Leftrightarrow...\)
c, ĐKXĐ: \(x\notin\left\{-2;1\right\}\)
\(\frac{3}{x^2+x-2}-\frac{1}{x-1}=\frac{-4}{x+2}\\ \Leftrightarrow\frac{3}{\left(x-1\right)\left(x+2\right)}-\frac{1}{x-1}=\frac{-4}{x+2}\\ \Leftrightarrow\frac{3-\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}=\frac{-4\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}\Leftrightarrow...\)
Thế thui, chúc bạn học tốt nha.
dù sao thì cũng cảm ơn cậu.
câu này tớ thật dự không biết thì mới hỏi mà chứ có phải là không dùng óc để suy nghĩ đâu. cậu học tốt nhé
b)áp dụng Bđt cô si
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}\cdot\frac{y^2}{x^2}}=2\)
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\)\(\Rightarrow-3\left(\frac{x}{y}+\frac{y}{x}\right)\ge-6\)
\(\Rightarrow P\ge2+\left(-5\right)+5=1\)
Dấu = khi x=y
a)Áp dụng Bđt Cô si ta có:
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\)
Dấu = khi \(x=y\)
Hình hiển thị bị lỗi rồi. Bạn nên gõ hẳn đề ra để được hỗ trợ tốt hơn nhé.
d) \(\left|2x-3\right|=x-3\)
TH1: \(\left|2x-3\right|=2x-3\) với \(2x-3\ge0\Leftrightarrow x\ge\dfrac{3}{2}\)
Pt trở thành:
\(2x-3=x-3\) (ĐK: \(x\ge\dfrac{3}{2}\) )
\(\Leftrightarrow2x-x=-3+3\)
\(\Leftrightarrow x=0\left(ktm\right)\)
TH2: \(\left|2x-3\right|=-\left(2x-3\right)\) với \(2x-3< 0\Leftrightarrow x< \dfrac{3}{2}\)
Pt trở thành:
\(-\left(2x-3\right)=x-3\)
\(\Leftrightarrow-2x+3=x-3\)
\(\Leftrightarrow-2x-x=-3-3\)
\(\Leftrightarrow-3x=-6\)
\(\Leftrightarrow x=-\dfrac{6}{-3}=2\left(ktm\right)\)
Vậy Pt vô nghiệm