Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{9}{n!}\)< \(\dfrac{n-1}{n!}\) = \(\dfrac{1}{(n-1)!} - \dfrac{1}{n!}\) với n > 10 (n thuộc Z)
\(\Rightarrow\) \(\dfrac{9}{10!} + \dfrac{9}{11!} + \dfrac{9}{12!} + ... +\dfrac{9}{1000!} \)
= \(\dfrac{1}{9!} - \dfrac{1}{10!} + \dfrac{9}{11!} + \dfrac{9}{12!} + ... +\dfrac{9}{1000!}\)
\(\Rightarrow\) \(\dfrac{1}{9!} - \dfrac{1}{10!} + \dfrac{1}{10!} - \dfrac{1}{11!} + \dfrac{1}{11!} - \dfrac{1}{12!} + ....\)
= \(\dfrac{1}{9!} - \dfrac{1}{1000!}\)
\(\Rightarrow \) \(\dfrac{9}{10!} + \dfrac{9}{11!} + ...+ \dfrac{9}{1000!} < \dfrac{1}{9!}\)
Chúc bn hc tốt.
a) Đặt :
\(A=\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+.................+\dfrac{1}{100!}\)
Ta thấy :
\(\dfrac{1}{2!}=\dfrac{1}{1.2}\)
\(\dfrac{1}{3!}=\dfrac{1}{1.2.3}\)
\(\dfrac{1}{4!}=\dfrac{1}{1.2.3.4}< \dfrac{1}{3.4}\)
.....................................
\(\dfrac{1}{100!}=\dfrac{1}{1.2.3..........100}< \dfrac{1}{99.100}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...........+\dfrac{1}{99.100}\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...........+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A< 1-\dfrac{1}{100}\)
\(A< \dfrac{99}{100}< 1\)
\(\Rightarrow A< 1\rightarrowđpcm\)
b) Đặt :
\(B=\dfrac{9}{10!}+\dfrac{9}{11!}+\dfrac{9}{12!}+.............+\dfrac{9}{1000!}\)
Ta thấy :
\(\dfrac{9}{10!}=\dfrac{10-1}{10!}=\dfrac{1}{9!}-\dfrac{1}{10!}\)
\(\dfrac{9}{11!}< \dfrac{11-1}{11!}=\dfrac{1}{10!}-\dfrac{1}{11!}\)
...................................................
\(\dfrac{9}{1000!}< \dfrac{1000-1}{1000!}=\dfrac{1}{999!}-\dfrac{1}{1000!}\)
\(\Rightarrow B< \dfrac{1}{9!}-\dfrac{1}{10!}+\dfrac{1}{10!}-\dfrac{1}{11!}+............+\dfrac{1}{999!}-\dfrac{1}{1000!}\)
\(B< \dfrac{1}{9!}-\dfrac{1}{1000!}\)
\(\Rightarrow B< \dfrac{1}{9!}\rightarrowđpcm\)
~ Chúc bn học tốt ~
1: \(=\dfrac{16}{15}\left(-\dfrac{4}{9}+\dfrac{3}{7}\right)+\dfrac{16}{15}\left(\dfrac{4}{7}-\dfrac{5}{9}\right)\)
\(=\dfrac{16}{15}\left(-\dfrac{4}{9}+\dfrac{3}{7}+\dfrac{4}{7}-\dfrac{5}{9}\right)=0\)
2: \(=\dfrac{29}{9}\left(15+\dfrac{4}{7}-8-\dfrac{1}{7}+\dfrac{15}{7}-\dfrac{1}{7}\right)\)
\(=\dfrac{20}{9}\cdot\left(7\cdot\dfrac{18}{7}\right)=\dfrac{20}{9}\cdot18=40\)
d, \(\dfrac{-5}{9}+\dfrac{3}{5}-\dfrac{3}{9}+\dfrac{-2}{5}\)
\(=\left(\dfrac{-5}{9}+\dfrac{-3}{9}\right)+\left(\dfrac{3}{5}+\dfrac{-2}{5}\right)\)
\(=\dfrac{-8}{9}+\dfrac{1}{5}=-\dfrac{31}{45}\)
e) \(\left(\dfrac{1}{9}-\dfrac{9}{17}\right)+\dfrac{3}{6}-\left(\dfrac{12}{17}-\dfrac{1}{2}\right)+\dfrac{5}{9}\)
\(=\dfrac{1}{9}-\dfrac{9}{17}+\dfrac{3}{6}-\dfrac{12}{17}+\dfrac{1}{2}+\dfrac{5}{9}\)
\(=\left(\dfrac{1}{9}+\dfrac{5}{9}\right)+\left(\dfrac{-9}{17}+\dfrac{-12}{17}\right)+\left(\dfrac{1}{2}+\dfrac{1}{2}\right)\)
\(=\dfrac{2}{3}+\left(-1\right)+1\)
\(=\dfrac{2}{3}+0=\dfrac{2}{3}\)
1) \(\dfrac{5}{6}-\dfrac{6}{7}+\dfrac{7}{8}-\dfrac{8}{9}+\dfrac{10}{9}-\dfrac{5}{6}+\dfrac{6}{7}-\dfrac{7}{8}+\dfrac{8}{9}\)
\(=\left(\dfrac{5}{6}-\dfrac{5}{6}\right)-\left(\dfrac{6}{7}+\dfrac{6}{7}\right)+\left(\dfrac{7}{8}-\dfrac{7}{8}\right)-\left(\dfrac{8}{9}+\dfrac{8}{9}\right)+\dfrac{10}{9}\)
\(=0-0+0-0+\dfrac{10}{9}\)
\(=\dfrac{10}{9}\)
2) \(\dfrac{1}{13}+\dfrac{16}{7}+\dfrac{3}{105}-\dfrac{9}{7}-\dfrac{-12}{13}\)
\(=\left(\dfrac{1}{13}-\left(-\dfrac{12}{13}\right)\right)+\left(\dfrac{16}{7}-\dfrac{9}{7}\right)+\dfrac{3}{105}\)
\(=1+1+\dfrac{3}{105}\)
\(=\dfrac{213}{105}=\dfrac{71}{35}\)
c,
= \(\dfrac{5}{9}.\left(\dfrac{7}{13}+\dfrac{9}{13}+\dfrac{-3}{13}\right)\)
= \(\dfrac{5}{9}.1\)
= \(\dfrac{5}{9}\)
\(a,\dfrac{3}{5}+\dfrac{-5}{9}=\dfrac{27-25}{45}=\dfrac{2}{49}.\)
\(c,\dfrac{-27}{23}+\dfrac{5}{21}+\dfrac{4}{23}+\dfrac{16}{21}+\dfrac{1}{2}=\dfrac{-23}{23}+\dfrac{21}{21}+\dfrac{1}{2}=-1+1+\dfrac{1}{2}=\dfrac{1}{2}.\)
\(d,\dfrac{-8}{9}+\dfrac{1}{9}.\dfrac{2}{9}+\dfrac{1}{9}.\dfrac{7}{9}=\dfrac{-8}{9}+\dfrac{1}{9}.\left(\dfrac{2}{9}+\dfrac{7}{9}\right)=\dfrac{-8}{9}+\dfrac{1}{9}.1=\dfrac{-8+1}{9}=\dfrac{-7}{9}.\)
ta có
\(2.\left(\dfrac{1}{3}+\dfrac{1}{13}+\dfrac{1}{11}+\dfrac{1}{6}\right)\) \(5.\left(\dfrac{1}{4}+\dfrac{1}{7}+\dfrac{1}{6}+\dfrac{1}{11}\right)\)
_______________________ X ________________________
\(4.\left(\dfrac{1}{3}+\dfrac{1}{13}+\dfrac{1}{11}+\dfrac{1}{6}\right)\) \(9.\left(\dfrac{1}{4}+\dfrac{1}{7}+\dfrac{1}{6}\dfrac{1}{11}\right)\)
= \(\dfrac{2}{4}X\dfrac{5}{9}\)= \(\dfrac{10}{36}\)= \(\dfrac{5}{18}\)
\(\dfrac{\dfrac{\dfrac{9}{9}}{\dfrac{9}{9}}}{\dfrac{\dfrac{9}{9}}{\dfrac{9}{9}}}\) + \(\dfrac{\dfrac{\dfrac{9}{9}}{\dfrac{9}{9}}}{\dfrac{\dfrac{9}{9}}{\dfrac{9}{9}}}\) = 1 + 1 = 2