K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

a) \(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=\dfrac{a_3-3}{7}=...=\dfrac{a_9-9}{1}\)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=\dfrac{a_3-3}{7}=....=\dfrac{a_9-9}{1}\)

\(=\dfrac{a_1-1+a_2-2+a_3-3+...+a_9-9}{9+8+7+...+1}\)

\(=\dfrac{\left(a_1+a_2+a_3+...+a_9\right)-9-8-7-...-1}{45}\)

\(=\dfrac{90-45}{45}=\dfrac{45}{45}=1\)

Từ đó => a1 = a2 = a3 = .... = a9 = 10

b) Áp dụng tính chất của dã tỉ số bằng nhau, ta có:

\(\dfrac{1+2y}{18}=\dfrac{1+6y}{6x}=\dfrac{1+2y+1+6y}{18+6x}=\dfrac{2+8y}{18+6x}=\dfrac{2\left(1+4y\right)}{2\left(9+3x\right)}=\dfrac{1+4y}{9+3x}\)

\(\Rightarrow\dfrac{1+4y}{9+3x}=\dfrac{1+4y}{24}\Rightarrow9+3x=24\)

\(\Rightarrow3x=15\)

\(\Rightarrow x=5\)

Vậy...

14 tháng 7 2017

\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=\dfrac{a_3-3}{7}=...=\dfrac{a_9-9}{1}\)

Dựa vào tính chất dãy tỉ số bằng nhau ta có:

\(=\dfrac{a_1-1+a_2-2+a_3-3+....+a_9-9}{9+8+7+.....+1}\)

\(=\dfrac{\left(a_1+a_2+a_3+.....+a_9\right)-\left(1+2+3++.....+9\right)}{9+8+7+.....+1}\)

\(=\dfrac{90-45}{45}=1\)

\(\Rightarrow a_1-1=9\Rightarrow a_1=10\)

\(\Rightarrow a_2-2=8\Rightarrow a_2=10\)

\(\Rightarrow a_3-3=7\Rightarrow a_3=10\)

\(.............................................\)

\(\Rightarrow a_9-9=1\Rightarrow a_9=10\)

\(\Rightarrow a_1=a_2=a_3=.....=a_{10}\)

20 tháng 5 2017

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=...=\dfrac{a_8}{a_9}=\dfrac{a_9}{a_1}=\dfrac{a_1+a_2+...+a_8+a_9}{a_2+a_3+...+a_9+a_1}=1\)

\(\Rightarrow\dfrac{a_1}{a_2}=1\Rightarrow a_1=a_2\)

...

\(\dfrac{a_9}{a_1}=1\Rightarrow a_9=a_1\)

\(\Rightarrow a_1=a_2=...=a_9\left(đpcm\right)\)

Vậy...

20 tháng 5 2017

ko bài này mình học rồi làm lại cho nhớ

23 tháng 3 2017

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_8}{a_9}=\dfrac{a_9}{a_1}=\dfrac{a_1+a_2+a_3+...+a_8+a_9}{a_1+a_2+a_3+...+a_9}=1\)

+) \(\dfrac{a_1}{a_2}=1\Rightarrow a_1=a_2\)

+) \(\dfrac{a_2}{a_3}=1\Rightarrow a_2=a_3\)

...

+) \(\dfrac{a_9}{a_1}=1\Rightarrow a_1=a_9\)

\(\Rightarrow a_1=a_2=a_3=...=a_9\left(đpcm\right)\)

Vậy...

30 tháng 3 2018

\(0< a_1< a_2< ...< a_9\)

\(\Rightarrow\left\{{}\begin{matrix}a_1+a_2+a_3< a_3+a_3+a_3=3a_3\\a_4+a_5+a_6< a_6+a_6+a_6=3a_6\\a_7+a_8+a_9< a_9+a_9+a_9=3a_9\end{matrix}\right.\)

\(\Rightarrow\dfrac{a_1+a_2+a_3+...+a_9}{a_3+a_6+a_9}< \dfrac{3\left(a_3+a_6+a_9\right)}{a_3+a_6+a_9}=3\)

12 tháng 8 2015

Vì x:y:z = 3:4:5 =>\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

=>\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}=\frac{2x^2}{18}=\frac{3y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3x^2}{18+32-75}=\frac{-100}{-25}=4\)

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}=4\)

=>(x;y;z)=(6;8;10),(-6;-8;-10)

B2

Ta có:

\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=......=\frac{a_9-9}{1}\)=\(\frac{a_1+a_2+......+a_9-45}{45}=\frac{90-45}{45}=1\)

=>\(\frac{a_1-1}{9}=1;\frac{a_2-2}{8}=1;.......\frac{a_9-9}{1}=1\)

=>a1=a2=......=a9=10

 

 

 

3 tháng 10 2016

Xem lại đề ik như hình là

\(\frac{a_1-1}{9}\)

10 tháng 7 2015

Theo dãy tỉ  số =  ta có :

 \(\frac{a_1-1}{9}=....=\frac{a_9-9}{1}=\frac{a_1-1+a_2-2+...+a_9-9}{9+8+7+6+..+1}=\frac{\left(a_1+..+a_9\right)-\left(1+2+..+9\right)}{1+2+3+..+9}\)

  \(=\frac{90-45}{45}=1\)

=> a1-1 = 1  => a1 = 2

=>  a2 - 2 = 1 => a2 = 3

.......................

=> a9 - 9 = 1 => a9 = 10

11 tháng 8 2015

Áp dụng dãy tỉ số bằng nhau ta có :"

         \(\frac{a1-1}{9}=\frac{a2-2}{8}=...=\frac{a9-9}{1}=\frac{a1-1+a2-2+..+a9-9}{9+8+..+1}\)

         \(=\frac{\left(a1+a2+..+a9\right)-\left(1+2+3+..+9\right)}{1+2+3+..+9}=\frac{90-45}{45}=1\)

=> a1 - 1 = 9 => a1 = 10 

=> a2 - 2 = 8 => a2 = 10

...............................

=>a9 - 1 = 9 => a9 = 10 

AH
Akai Haruma
Giáo viên
25 tháng 4 2018

Lời giải:

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x_1}{a_1}=\frac{x_2}{a_2}=\frac{x_3}{a_3}=...=\frac{x_n}{a_n}=\frac{x_1+x_2+...+x_n}{a_1+a_2+...+a_{n}}\)

\(=\frac{c}{a_1+a_2+...+a_n}\)

Do đó:

\(\left\{\begin{matrix} x_1=\frac{ca_1}{a_1+a_2+....+a_n}\\ x_2=\frac{ca_2}{a_1+a_2+....+a_n}\\ x_3=\frac{ca_3}{a_1+a_2+...+a_n}\\ ...\\ x_n=\frac{ca_n}{a_1+a_2+..+a_n}\end{matrix}\right.\)

Tóm lại : \(x_i=\frac{ca_i}{a_1+a_2+...+a_n}\) với \(i=1,2,3,...,n\)

13 tháng 10 2017

\(\dfrac{x_1}{a_1}=\dfrac{x_2}{a_2}=...=\dfrac{x_n}{a_n}=\dfrac{x_1+x_2+...+x_{n-1}+x_n}{a_1+a_2+...+a_{n-1}+a_n}\)

\(=\dfrac{c}{a_1+a_2+...+a_n}\)

Suy ra:

\(x_1=\dfrac{a_1.c}{a_1+a_2+...+a_n}\)

\(x_2=\dfrac{a_2.c}{a_1+a_2+...+a_n}\)

.........................................

\(x_n=\dfrac{a_n.c}{a_1+a_2+...+a_n}\)