K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

góc HAD=góc KAD

Do đo:ΔAHD=ΔAKD

b: Tacó: AH=AK

DH=DK

Do đó: AD là đường trung trực của HK

hay AD vuông góc với KH

c: Gọi M là giao điểm của CE và AH

Xét ΔCAM có

CH là dường cao

AE là đường cao

CH cắt AE tại D

DO đo: D là trực tâm

=>M,D,K thẳng hàng

hay AH,KD,CE đồng quy

a: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

góc HAD=góc KAD

Do đo: ΔAHD=ΔAKD

b: Ta có: AH=AK

DH=DK

Do đó: AD là đường trung trực của HK

hay AD vuông góc với HK

c: \(AC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Câu 1: 

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

góc ABE=góc HBE

Do đo: ΔABE=ΔHBE

b: Ta có:BA=BH

EA=EH
Do đó:BE là đường trung trực của AH

c: Ta có: EA=EH

mà EH<EC

nên EA<EC

23 tháng 4 2017

a) Xét ΔBAE vuông tại A và ΔBDE vuông tại D có: BA = BD (gt); BE cạnh chung

Vậy: ΔBAE=ΔBDE (ch, cgv)

b), c) Gọi I là giao điểm của BE và AD.

Xét ΔABI và ΔDBI có: BA = BD (gt)

\(\widehat{ABI}\) = \(\widehat{DBI}\) (2 góc tương ứng)

BI cạnh chung

Vậy ΔABI và ΔDBI (c.g.c)

\(\Rightarrow\) \(\widehat{BAD}\) = \(\widehat{BDA}\) (2 góc tương ứng)

Ta có: \(\widehat{BAC} = 90\)\(^o\)\(\widehat{AHD} = 90\)\(^o\),

\(\widehat{BAD}\)= \(\widehat{BDA}\) \(\Rightarrow\)\(\widehat{HAD} = \widehat{DAK}\)

Vậy AD là tia phân giác \(\widehat{HAC}\)

Xét ΔHAD vuông tại H và ΔKAD vuông tại K có:

\(\widehat{HAD} = \widehat{KAD}\) (cmt)

AD cạnh chung

Vậy: ΔHAD = ΔKAD (ch, gn)

\(\Rightarrow\) AH = AK (2 cạnh tương ứng)

d) F đâu ra

12 tháng 8 2017

a) Ta có AB^2 + AC^2=6^2 + 8^2= 36 + 64= 100=BC^2

=> ΔABC vuông tại A (định lý Py- ta-go đảo)

b) Xét ΔAHD và ΔAED có:

AD là cạnh chung

^AHD=^AED (=90°)

^HAD=^EAD (AD là tia phân giác)

Vậy ΔAHD = ΔAED

=> AH=AE

     DH=DE

Nên AD là đường trung trực của HE

c) ΔDEC vuông tại E có DC là cạnh huyền nên DC là cạnh lớn nhất.

Do đó DE<DC

Mà DH=DE (cmt)

Nên DH<DC

26 tháng 4 2018

a) Xét tam giác ABC có:
6^2 +8^2 =10^2
<=> AB^2 +AC^2 =BC^2
Áp dụng định lí Py-ta-go
=> tam giác ABC vuông tại A
=> đpcm
b)
+) xét tam giác AHD và tam giác AED có:
góc H = góc E =90 độ
cạnh AD chung
góc HAD = góc DAE ( gt)
=> tam giác AHD = tam giác AED (cạnh huyền -góc nhọn)
=> AH =AE ( 2 cạnh tương ứng)
=> Tam giác AHE cân tại A (1)
Gọi giao điểm của HE và AD là O
=> HO = OE
=> AO là đường trung tuyến của HE(2)
Từ 1 và 2
=> OA là đường trung trực của HE
Hay Ad là đường trung trực của HE
=> đpcm