Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(\frac{2\left(x-2\sqrt{x}+1\right)}{x-1}\right)\)
ĐKXĐ : \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
a, \(P=\left(\frac{\left(x\sqrt{x}-1\right)\left(x+\sqrt{x}\right)-\left(x\sqrt{x}+1\right)\left(x-\sqrt{x}\right)}{\left(x-\sqrt{x}\right)\left(x+\sqrt{x}\right)}\right):\left(\frac{2\left(\sqrt{x}-1\right)^2}{x-1}\right)\)
\(\Leftrightarrow P=\left(\frac{x^2\sqrt{x}+x^2-x-\sqrt{x}-x^2\sqrt{x}+x^2-x+\sqrt{x}}{x\left(x-1\right)}\right):\left(\frac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(\Leftrightarrow P=\frac{2x\left(x-1\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\left(\sqrt{x}-1\right)^2x\left(x-1\right)}\)
\(\Leftrightarrow P=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b,\(P=\frac{\sqrt{x}-1+2}{\sqrt{x}-1}\)
Để P thuộc Z
\(\Rightarrow2⋮\sqrt{x}-1\)
\(\Rightarrow\sqrt{x}-1\in\left(1;-1;2;-2\right)\)
\(\Leftrightarrow\sqrt{x}\in\left(2;0;3;-1\right)\)
\(\Leftrightarrow x=0\)(ko t/m đkxđ)
Vậy ko có x nguyên để P nguyên
Ta có
\(1D=\frac{\sqrt{x}-2}{\sqrt{x}-3}=1+\frac{1}{\sqrt{x}-3}\)
Để cho D nguyên thì \(\sqrt{x}-3\)phải là ước của 1
\(\Rightarrow\sqrt{x}-3=\left(-1;1\right)\)
=> x = (4; 16)
=> D = (0; 2)
1/ Để N nhận giá trị nguyên thì trước hết \(\sqrt{x}-2\)phải là ước của 3
\(\sqrt{x}-2=\left(-3;-1;1;3\right)\)
Thế vào ta tìm được x = (1; 9; 25)
=> N = (- 3; 3;1)
\(P=\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(\frac{2\left(x-2\sqrt{x}+1\right)}{x-1}\right)\)
\(=\left[\frac{\left(x\sqrt{x}-1\right)\left(x+\sqrt{x}\right)}{\left(x-\sqrt{x}\right)\left(x+\sqrt{x}\right)}-\frac{\left(x\sqrt{x}+1\right)\left(x-\sqrt{x}\right)}{\left(x-\sqrt{x}\right)\left(x+\sqrt{x}\right)}\right]:\left[\frac{2\left(\sqrt{x}-1\right)^2}{x-1}\right]\)
Phương trình tương đương :
\(=\frac{2x^2-2x}{x^2-x}:\frac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=2:\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}+1}=\frac{2\left(\sqrt{x}+1\right)}{2\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(P=\frac{x-1+3}{\sqrt{x}-1}=\frac{x-1}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}=\sqrt{x}+1+\frac{3}{\sqrt{x}+1}\)
Tìm x nguyên để \(\frac{3}{\sqrt{x}+1}\)nguyên