Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét `ΔABM` và `ΔACN` có:
`\hat{AMB}=\hat{ANC}=90^o`
`AB=AC(g t)`
`\hat{A}:chung`
`⇒ ΔABM=ΔΔACN(CH-GN)`
`=> AM=AN` (2 cạnh tương ứng)
b) Xét `ΔAHN` và `ΔAHM` có:
`AN=AM(cmt)`
`\hat{ANH}=\hat{AMH}=90^o`
`AH:chung`
`=> ΔAHN=ΔAHM(CH-CGV)`
`=> \hat{NAH}=\hat{MAH}` (2 góc tương ứng)
`=> AH` là tia phân giác của `\hat{NAM}` (hay `\hat{BAC}`) (1)
Xét `ΔABK` và `ΔACK` có:
`AB=AC(g t)`
`AK:chung`
`BK=KC` (K là trung điểm của BC)
`=> ΔABK=ΔACK(c.c.c)`
`=> \hat{BAK}=\hat{CAK}` (2 góc tương ứng)
`=> AK` là tia phân giác của `\hat{BAC}` (2)
Từ (1) và (2) `=>` 3 điểm `A,H,K` thẳng hàng
nguồn: copy
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM vừa là đường cao vừa là đường phân giác
Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: MH=MK
b: Ta có: ΔAHK cân tại A
mà AM là đường phân giác
nên AM là đường trung trực của HK
a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
\(\widehat{BAM}\) chung
Do đó: ΔAMB=ΔANC
Suy ra: AM=AN
b: Xét ΔNCB vuông tại N và ΔMBC vuông tại M có
BC chung
\(\widehat{NBC}=\widehat{MCB}\)
Do đó: ΔNCB=ΔMBC
Suy ra: \(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
=>IB=IC
Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó: ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
Ta có:
EAHˆ+AHEˆ=90o;DBHˆ+BHDˆ=90o
(theo tính chất tổng hai góc nhọn trong tam giác vuông)
mà AHEˆ=BHDˆ(d.d)
nên EAHˆ=DBHˆ
Xét ΔAEH và ΔBEC ta có:
AH=BC(gt);EAHˆ=EBCˆ(cmt)
Do đó ΔAEH=ΔBEC (cạnh huyền - góc nhọn)
⇒AE=BE (cặp cạnh tương ứng)
mà AEBˆ=90o nên ΔAEB vuông cân tại E
⇒BAEˆ=45o (theo tính chất của tam giác giác vuông cân)
hay BACˆ=45o
Vậy .....
1: Xét ΔCMA vuông tại M và ΔCNB vuông tại N có
CA=CB
\(\widehat{ACM}\) chung
Do đó: ΔCMA=ΔCNB
2: Xét ΔCAB có CN/CA=CM/CB
nên NM//BA