Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow sinA=2sinB.cosC\)
\(\Leftrightarrow\dfrac{a}{2R}=2.\dfrac{b}{2R}.\dfrac{a^2+b^2-c^2}{2ab}\)
\(\Leftrightarrow a^2=a^2+b^2-c^2\)
\(\Leftrightarrow b^2=c^2\Leftrightarrow b=c\)
Vậy tam giác ABC cân tại A
Ta có: \(A+B+C=180^o\)
a)
\(\sin (B + C) = \sin \left( {{{180}^o} - A} \right) = \sin A\)
Vậy \(\sin A = \sin \;(B + C)\)
b)
\(\cos (B + C) = \cos \left( {{{180}^o} - A} \right) = - \cos A\)
Vậy \(\cos A = - \cos \;(B + C)\)
A, B , C là ba góc của ΔABC nên ta có: A + B + C = 180º
a) sin A = sin (180º – A) = sin (B + C)
b) cos A = – cos (180º – A) = –cos (B + C)
a: ΔABC có góc B+góc C+góc A=180 độ
=>góc B=180 độ-góc C-góc A
=>tan B=tan(A+C)
b: ΔABC có góc C+góc B+góc A=180 độ
=>góc C=180 độ-góc B-góc A
=>sin C=sin(A+B)
c: Xét ΔABC có góc A+góc B+góc C=180 độ
=>góc A=180 độ-góc B-góc C
=>cosA=-cos(B+C)
\(a.\left(c.cosC-b.cosB\right)=a.\left(c.\dfrac{a^2+b^2-c^2}{2ab}-b.\dfrac{a^2+c^2-b^2}{3ac}\right)\)
\(=\dfrac{\left(a^2+b^2-c^2\right)c^2}{2bc}-\dfrac{\left(a^2+c^2-b^2\right)b^2}{2bc}\)
\(=\dfrac{\left(b^2-c^2\right)\left(b^2+c^2-a^2\right)}{2bc}=\left(b^2-c^2\right)cosA\)
định lý hàm số sin:
a/ \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=\)2R
=> a = 2R.sinA = 2R.sin[180o - (B+C)] = 2R.sin(B+C)
và b = 2R.sinB; c = 2R.sinC thay vào (*) được:
\(\frac{2R\times sinB}{cosB}+\frac{2R\times sinC}{cosC}=\frac{2R\times sin\left(B+C\right)}{sinBsinC}\)
<=>sinB/cosB + sinC/cosC = sin(B+C)/(sinB.sinC)
<=> sin(B+C)/(cosBcosC) = sin(B+C)/(sinB.sinC)
<=> cosBcosC = sinB.sinC
<=> cosBcosC - sinB.sinC = 0
<=> cos(B+C) = 0
<=> B+C = 90o
vậy tam giác ABC vuông tại A
b/cosB+c/cosC=a/sinB.sinC (*)
Áp dụng định lý hàm số sin:
a/sinA = b/sinB = c/sinC = 2R
=> a = 2R.sinA = 2R.sin[1800 - (B+C)] = 2R.sin(B+C)
và b = 2R.sinB; c = 2R.sinC thay vào (*) được:
2R.sinB/cosB + 2RsinC/cosC = 2R.sin(B+C)/(sinB.sinC)
<=>sinB/cosB + sinC/cosC = sin(B+C)/(sinB.sinC)
<=> sin(B+C)/(cosBcosC) = sin(B+C)/(sinB.sinC)
<=> cosBcosC = sinB.sinC
<=> cosBcosC - sinB.sinC = 0
<=> cos(B+C) = 0
<=> B+C = 900
Áp dụng hệ quả định lí hàm Cos ta có:
\(a.cosB=b.cosA\\ \Leftrightarrow a.\dfrac{a^2+c^2-b^2}{2ac}=b.\dfrac{b^2+c^2-a^2}{2bc}\\ \)
\(\Leftrightarrow\dfrac{a^2+c^2-b^2}{2c}=\dfrac{b^2+c^2-a^2}{2c}\\ \)
\(\Leftrightarrow a^2+c^2-b^2=b^2+c^2-a^2\\ \)
\(\Leftrightarrow a^2-b^2=b^2-a^2\\ \Rightarrow a=b\)
Vậy tam giác ABC cân tại C