Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài, chiều rộng mảnh vườn là x và y ( m ; x > y ; x > 3 ; y > 2 )
Diện tích ban đầu = xy ( m2 )
Tăng chiều dài 1m và giảm chiều rộng 2m thì diện tích giảm 20m2 so với quy định
=> ( x + 1 )( y - 2 ) = xy - 20
<=> xy - 2x + y - 2 - xy + 20 = 0
<=> -2x + y = -18 (1)
Giảm chiều dài 3m và tăng chiều rộng 4m thì diện tích tăng 12m2 so với dự định
=> ( x - 3 )( y + 4 ) = xy + 12
<=> xy + 4x - 3y - 12 - xy - 12 = 0
<=> 4x - 3y = 24 (2)
Từ (1) và (2) ta có hệ phương trình : \(\hept{\begin{cases}-2x+y=-18\\4x-3y=24\end{cases}}\)
Giải hệ ta thu được x = 15 và y = 12
Hai nghiệm trên thỏa mãn ĐKXĐ
Vậy diện tích mảnh vườn ban đầu = xy = 15.12 = 180m2
Gọi x(m) là chiều rộng của mảnh vườn ban đầu
y(m) là chiều dài của mảnh vườn ban đầu
=> Diện tích ban đầu của mảnh vườn là x.y (m)
Ta có: Nếu tăng chiều dài thêm 1m và giảm chiều rộng 2m thì mảnh vườn giảm 20m ² so với dự định
=> (y+1).(x-2)=xy-20
<=> xy -2y+x -2= xy-20
<=> x-2y=-18 (1)
Nếu giảm chiều dài 3m và tăng chiều rộng thêm 4m thì diện tích mảnh vườn tăng 12m ² so với dự định .=> (y-3).(x+4)=xy+12
<=> xy +4y-3x-12=xy+12
<=> -3x+4y=24 (2)
Từ (1);(2) ta giải hệ pt được x=12; y=15
Diện tích mảnh vườn bác An dự định ban đầu là x.y=12.15=180 m²
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có hệ:
a-b=13 và (a-5)(b+3)=ab-30
=>a-b=13 và 3a-5b=-15
=>a=40 và b=27
Diện tích vườn là 40*27=1080m2
Gọi chiều dài,chiều rộng của mảnh vườn lần lượt là a,b(m) \(\left(a>b>0\right)\)
Theo đề: \(\left\{{}\begin{matrix}ab=80\\\left(a-2\right)\left(b+3\right)=80+32=112\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}ab=80\left(1\right)\\ab+3a-2b-6=112\left(2\right)\end{matrix}\right.\)
Thế (1) vào (2): \(\Rightarrow3a-2b=38\Rightarrow3a=2b+38\)
Ta có: \(3ab=3.80=240\Rightarrow b\left(2b+38\right)=240\Rightarrow2b^2+38b-240=0\)
\(\Rightarrow\left(b-5\right)\left(b+24\right)=0\) mà \(b>0\Rightarrow b=5\Rightarrow a=16\)
Bài giải
Gọi chiều dài là x(m)
Gọi chiều rộng là y(m)
Diện tích mảnh vườn ban đầu là: x.y=80 (m2) (1)
Diện tích mảnh vườn khi thay đổi chiều dài, chiều rộng là: (x-2).(y+3) = 112 (m2) (2)
từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}xy=80\\\left(x-2\right)\left(y+3\right)=112\end{matrix}\right.\)
từ (1) => x= \(\dfrac{80}{y}\)
Thay x= \(\dfrac{80}{y}\) vào (2) => x=16 ; y = 5
Vậy...............................
Gọi chiều dài HCN là x (x>0,m)
Ta có chiều rộng HCN là \(\frac{720}{x}\left(m\right)\)
Theo bài ra ta có phương trình sau
\(\left(x+1\right)\left(\frac{720}{x}-6\right)=720\Leftrightarrow6x^2+60x-7200=0\Leftrightarrow x^2+10x-1200=0\)
\(\Delta=10^2-4.1.\left(-1200\right)=100+4800=4900>0\)
Tự thực hiện tiếp ....
Gọi chiều rộng mảnh vườn là x (m) (x>0)
=> Chiều rộng mảnh vườn: x+24 (m)
Diện tích mảnh vườn ban đầu : x(x+24) (m2)
Theo bài ta có : (x+22)(x+3) = x(x+24)+72
x2 + 3x + 22x + 66 = x2 + 24x + 72
\(\Leftrightarrow x=6\) (tmx>0)
Diện tích mảnh vườn: 6.(6+24) = 180 m2
Gọi a là chiều dài, b là chiều rộng mảnh vườn ( a, b >0 )
Diện tích mảnh vườn: S= a.b = 45
Theo đề bài nếu tăng rộng 2m giảm dài 2m thì mảnh vườn trở thành hình vuông
=> a - 2 = b + 2
<=> a = b + 4
Thay vào công thức tính diện tích ta được:
S = a.b = b(b+4) = 45
<=> b^2 + 4b - 45 = 0
<=> b^2 - 5b + 9b - 45 = 0
<=> (b - 5)(b + 9) = 0
<=> b = 5 hoặc b = -9
Vì b > 0 nên b = 5
Vậy a = b+4 = 5 + 4 = 9
Vậy chiều dài là 9m, rộng là 4m.
Xin lỗi em trình bày lượm thượm ạ
Gọi chiều rộng của mảnh vườn ban đầu là x>0 (m)
Chiều dài ban đầu: \(x+2\) (m)
Sau khi tăng kích thước thì chiều rộng là: \(x+3\) (m)
Chiều dài khu vườn sau khi giảm: \(x+1\) (m)
Theo bài ra ta có pt:
\(\left(x+3\right)\left(x+1\right)=99\)
\(\Leftrightarrow x^2+4x-96=0\Rightarrow\left[{}\begin{matrix}x=-12\left(loại\right)\\x=8\end{matrix}\right.\)
Diện tích khu vườn ban đầu: \(8.\left(8+2\right)=80\left(m^2\right)\)