Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài, chiều rộng mảnh vườn là x và y ( m ; x > y ; x > 3 ; y > 2 )
Diện tích ban đầu = xy ( m2 )
Tăng chiều dài 1m và giảm chiều rộng 2m thì diện tích giảm 20m2 so với quy định
=> ( x + 1 )( y - 2 ) = xy - 20
<=> xy - 2x + y - 2 - xy + 20 = 0
<=> -2x + y = -18 (1)
Giảm chiều dài 3m và tăng chiều rộng 4m thì diện tích tăng 12m2 so với dự định
=> ( x - 3 )( y + 4 ) = xy + 12
<=> xy + 4x - 3y - 12 - xy - 12 = 0
<=> 4x - 3y = 24 (2)
Từ (1) và (2) ta có hệ phương trình : \(\hept{\begin{cases}-2x+y=-18\\4x-3y=24\end{cases}}\)
Giải hệ ta thu được x = 15 và y = 12
Hai nghiệm trên thỏa mãn ĐKXĐ
Vậy diện tích mảnh vườn ban đầu = xy = 15.12 = 180m2
Gọi x(m) là chiều rộng của mảnh vườn ban đầu
y(m) là chiều dài của mảnh vườn ban đầu
=> Diện tích ban đầu của mảnh vườn là x.y (m)
Ta có: Nếu tăng chiều dài thêm 1m và giảm chiều rộng 2m thì mảnh vườn giảm 20m ² so với dự định
=> (y+1).(x-2)=xy-20
<=> xy -2y+x -2= xy-20
<=> x-2y=-18 (1)
Nếu giảm chiều dài 3m và tăng chiều rộng thêm 4m thì diện tích mảnh vườn tăng 12m ² so với dự định .=> (y-3).(x+4)=xy+12
<=> xy +4y-3x-12=xy+12
<=> -3x+4y=24 (2)
Từ (1);(2) ta giải hệ pt được x=12; y=15
Diện tích mảnh vườn bác An dự định ban đầu là x.y=12.15=180 m²
Gọi chiều dài mảnh vườn là x ( x > 0 )
=> Chiều rộng mảnh vườn = 720/x ( m )
Tăng chiều dài 6m và giảm chiều rộng 4m
=> Chiều dài mới = ( x + 6 )m và chiều rộng mới = ( 720/x - 4 )m
Khi đó diện tích mảnh vườn không đổi
=> Ta có phương trình : \(x\cdot\frac{720}{x}=\left(x+6\right)\left(\frac{720}{x}-4\right)\)( bạn tự giải nhé )
Giải phương trình thu được 2 nghiệm x1 = -36 ( loại ) và x2 = 30 ( nhận )
=> Chiều dài mảnh vườn = 30m
Chiều rộng mảnh vườn = 720/30 = 24m
Gọi chiều dài,chiều rộng của mảnh vườn lần lượt là a,b(m) \(\left(a>b>0\right)\)
Theo đề: \(\left\{{}\begin{matrix}ab=80\\\left(a-2\right)\left(b+3\right)=80+32=112\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}ab=80\left(1\right)\\ab+3a-2b-6=112\left(2\right)\end{matrix}\right.\)
Thế (1) vào (2): \(\Rightarrow3a-2b=38\Rightarrow3a=2b+38\)
Ta có: \(3ab=3.80=240\Rightarrow b\left(2b+38\right)=240\Rightarrow2b^2+38b-240=0\)
\(\Rightarrow\left(b-5\right)\left(b+24\right)=0\) mà \(b>0\Rightarrow b=5\Rightarrow a=16\)
Bài giải
Gọi chiều dài là x(m)
Gọi chiều rộng là y(m)
Diện tích mảnh vườn ban đầu là: x.y=80 (m2) (1)
Diện tích mảnh vườn khi thay đổi chiều dài, chiều rộng là: (x-2).(y+3) = 112 (m2) (2)
từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}xy=80\\\left(x-2\right)\left(y+3\right)=112\end{matrix}\right.\)
từ (1) => x= \(\dfrac{80}{y}\)
Thay x= \(\dfrac{80}{y}\) vào (2) => x=16 ; y = 5
Vậy...............................
Gọi chiều dài và chiều rộng của mảnh vườn lần lượt là a(m) và b(m)(Điều kiện: a>0; b>0; \(a\ge b\))
Vì khi giảm chiều dài đi 1m và tăng chiều rộng thêm 1m thì mảnh vườn trở thành hình vuông nên ta có phương trình:
\(\left(a-1\right)=b+1\)
\(\Leftrightarrow a-b=2\)(1)
Vì diện tích của mảnh vườn là 168m2 nên ta có phương trình: ab=168(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a-b=2\\ab=168\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\\left(b+2\right)\cdot b=168\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\b^2+2b-168=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\b^2+2b+1=169\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\\left(b+1\right)^2=169\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\b+1=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+2\\b=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14\\b=12\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài của mảnh vườn là 14m
Chiều rộng của mảnh vườn là 12m
Gọi chiều dài HCN là x (x>0,m)
Ta có chiều rộng HCN là \(\frac{720}{x}\left(m\right)\)
Theo bài ra ta có phương trình sau
\(\left(x+1\right)\left(\frac{720}{x}-6\right)=720\Leftrightarrow6x^2+60x-7200=0\Leftrightarrow x^2+10x-1200=0\)
\(\Delta=10^2-4.1.\left(-1200\right)=100+4800=4900>0\)
Tự thực hiện tiếp ....
Gọi a là chiều dài, b là chiều rộng mảnh vườn ( a, b >0 )
Diện tích mảnh vườn: S= a.b = 45
Theo đề bài nếu tăng rộng 2m giảm dài 2m thì mảnh vườn trở thành hình vuông
=> a - 2 = b + 2
<=> a = b + 4
Thay vào công thức tính diện tích ta được:
S = a.b = b(b+4) = 45
<=> b^2 + 4b - 45 = 0
<=> b^2 - 5b + 9b - 45 = 0
<=> (b - 5)(b + 9) = 0
<=> b = 5 hoặc b = -9
Vì b > 0 nên b = 5
Vậy a = b+4 = 5 + 4 = 9
Vậy chiều dài là 9m, rộng là 4m.
Xin lỗi em trình bày lượm thượm ạ