Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hồng Ánh ơi! bít thì chỉ cách làm giùm coi, tui cũng bít đây là dạng toán 7 nhưng cách giải khó hơn bạn ạ. Nếu bạn bít thì chỉ cần tóm tắt cách làm thui tụi tôi tick cho
a) Ta có: ABCD là hình vuông
nên DB là tia phân giác của \(\widehat{ADC}\)
\(\Leftrightarrow\widehat{ADB}=\widehat{CDB}=45^0\)
hay \(\widehat{FDM}=45^0\)
Xét ΔMFD vuông tại F có \(\widehat{FDM}=45^0\)(cmt)
nên ΔMFD vuông cân tại F
Suy ra: FM=FD(1)
Xét tứ giác AEMF có
\(\widehat{EAF}=90^0\)
\(\widehat{AFM}=90^0\)
\(\widehat{AEM}=90^0\)
Do đó: AEMF là hình chữ nhật
Suy ra: AE=MF(2)
Từ (1) và (2) suy ra AE=DF
Xét ΔAED vuông tại A và ΔDFC vuông tại F có
AE=DF
AD=DC
Do đó: ΔAED=ΔDFC
Suy ra: DE=CF
a, AEMF là hình chữ nhật nên AE=FM
ΔDFM vuông cân tại F suy ra FM=DF
⇒AE=DFsuy ra ΔADE=ΔDCF
⇒DE=CF
b, Tương tự câu a, dễ thấy AF=BE
⇒ΔABF=ΔBCE
⇒ABF^=BCE^ nên BF vuông góc CE
Gọi H là giao điểm của BFvà DE
⇒H là trực tâm của tam giác CEF
Gọi N là giao điểm của BCvà MF
CN=DF=AEvà MN=EM=AF
ΔAEF=ΔCMN
⇒ˆAEF=ˆMCN
⇒CM⊥EF
Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
A B C D E F M I S
a) Dễ thấy: \(\Delta\)BME vuông cân tại E => BE = ME (1)
Xét tứ giác AEMF: ^FAE = ^AEM = ^AFM = 900 => Tứ giác AEMF là hình chữ nhật => ME = AF (2)
(1); (2) => BE = AF => \(\Delta\)CBE = \(\Delta\)BAF (c.g.c) => CE = BF (đpcm)
Đồng thời: ^BCE= ^ABF. Mà ^ABF + ^CBF = 900
Nên ^BCE + ^CBF = 900 hay ^BCI + ^CBI = 900 => CE vuông góc BF tại I => ^EBF = ^MEC (Cùng phụ ^BEC)
Xét \(\Delta\)BEF và \(\Delta\)EMC có: ^EBF = ^MEC; BE = EM; BF = EC => \(\Delta\)BEF = \(\Delta\)EMC (c.g.c)
=> EF = MC (2 canh tương ứng) (đpcm).
b) Gọi S là trung điểm cạnh BC
Xét \(\Delta\)BIC: Vuông tại I; trung tuyến IS => IS = BC/2 = a/2
=> I luôn cách S 1 khoảng không đổi bằng a/2. Ta có: S là trung điểm cạnh BC nên S cố định => ĐPCM.
c) C/m tương tự câu a: DE vuông góc CF
Do CE vuông góc BF (cmt) nên ^EIF = 900 => ^IFE + ^IEF = 900 hay ^CEF + ^BFE = 900
Mà \(\Delta\)BEF = \(\Delta\)EMC (cmt) => ^BFE = ^ECM (2 góc tương ứng)
Nên ^CEF + ^ECM = 900 => CM vuông góc EF
Xét \(\Delta\)EFC: DE vuông góc CF; BF vuông góc CE; CM vuông góc EF
=> BF; CM; DE đồng qui (đpcm).