Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(BC^2=AB^2+AC^2\) (do \(5^2=4^2+3^2\) )
\(\Rightarrow\Delta ABC\) vuông tại A
b) Xét 2 tam giác vuông BDA và BDE, có:
Góc ABD = góc EBD (phân giác BD của góc B)
BD là cạnh chung
\(\Rightarrow\) \(\Delta\) vuông BDA = \(\Delta\) vuông BDE(cạnh huyền - góc nhọn)
\(\Rightarrow\) DA = DE(2 cạnh tương ứng)
c) Xét 2 tam giác vuông ADF và EDC, ta có:
DA = DE (chứng minh a)
góc ADF = góc EDC (đối đỉnh)
\(\Rightarrow\Delta\) vuông ADF = \(\Delta\) vuông EDC (cạnh góc vuông - góc nhọn)
Ta có: \(\Delta\)ADF là tam giác vuông tại A
\(\Rightarrow\) DF là cạnh huyền của tam giác ADF
\(\Rightarrow\) DF > DA
Mà DE = DA (\(\Delta ADF=\Delta EDC\) )
nên DF > DE
a: BC=5cm
AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>DA=DE
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
=>DF=DC>DE
xét tam giác adf và tam giác edc ta có
da=de (giải câu b)
góc fda = góc cde ( 2 góc đối đỉnh)
góc a= góc e
vậy tam giác adf = tam giác edc(g.c.g)
=>df=dc(2 cạnh tương ứng)(1)
xét tam giác dec vuông tại e ta có
dc>de(dc là cạnh huyền)(2)
từ (1)và (2) =>df=de
Thời gian tào hỏa đi là:
20 - 4 = 16(phút)
Quãng đường AB là:
120 x 16 = 1920(km)
Đáp số: 1920 km
a. Ta có: 32+42=52
9+16=25
=> Tam giác ABC là tam giác vuông tại A (định lí Py-ta-go đảo)
b. Xét tam giác ABD và tam giác DBE có:
góc A= góc E (=90º)
góc ABD=góc DBE (BD là tia phân giác của góc B)
BD là cạnh huyền chung
=> tam giác ABD = tam giác DBE(cạnh huyền- góc nhọn)
=> DA=DE (2 cạnh tương ứng)
c. Xét tam giác ADF và tam giác EDC có:
góc A= góc E (=90º)
góc ADF=góc EDC (đối đỉnh)
AD=DC (c/m ở câu b)
=> tam giác ADF = tam giác EDC (cạnh góc vuông-góc nhọn kề)
Ta có: góc A>góc C (vì A là góc vuông, C là góc nhọn)
=> DF > DE (quan hệ giữa đường xiên và hình chiếu)
a) Xét 2 tam giác ABC
Áp dụng định lý Pytago đảo có:
BC2 = 5252 = 15
AB2+AC2=32+42=9+16=25
=> Tam giác ABC vuông tại A
b)
Xét 2 tam giác vuông ABD và tam giác EBD có:
Góc B1 = góc B2 (gt)
BD là cạnh huyền chung
=> Tam giác ABD = tam giác EBD (cạnh huyền- góc nhọn)
=> AD=ED (đpcm)
c)
Xét 2 tam giác vuông ADF và tam giác EDC có:
Góc D1 = góc D2 (đối đỉnh)
AD = ED (vì tam giác ABD = tam giác EBD)
=> tam giác ADF = tam giác EDC (cạnh góc vuông- góc nhọn kề cạnh ấy)
=> DF = DC (2 cạnh tương ứng)
Xét tam giác EDC vuông tại E có:
DC > DE ( cạnh huyền > cạnh góc vuông)
mà DF = DC
=> DF > DE (đpcm)
CHÚC BN HỌC TỐT ^-^
a: Xét ΔABC có AB<AC<BC
mà \(\widehat{ACB};\widehat{ABC};\widehat{BAC}\) lần lượt là góc đối diện của các cạnh AB,AC,BC
nên \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)
b: Xét ΔABC có \(AB^2+AC^2=BC^2\)
nên ΔABC vuông tại A
Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
=>DA=DE
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAF=ΔDEC
=>DF=DC