Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có:
\(AB^2+AC^2=BC^2=3^2+4^2=25\)
\(\Rightarrow BC=5\left(cm\right)\)\(\Rightarrow\Delta ABC⊥A\)
b)
Xét \(\Delta ABD\) và \(\Delta EDB\) có:
\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)
\(BD\)là cạnh chung
\(\widehat{A}=\widehat{E}=90^o\)
\(\Rightarrow\Delta ABD=\Delta EBD\left(g.c.g\right)\)
\(\Rightarrow DA=DE\)( hai cạnh tương ứng )
\(\RightarrowĐpcm\)
c) Đề sai thì phải!
a, co: ab2+ac2=32+42=9+16=25
bc2=52=25
suy ra :ab2+ac2=bc2
suy ra: tamgiac abc vuong tai a (dinh ly pytago dao )
b, ......
c, ......
a: XétΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b:Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: DA=DE
a) Xét ΔABC có \(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)
nên ΔBAC vuông tại A(Định lí Pytago đảo)
b) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
Suy ra: DA=DE(hai cạnh tương ứng)
c) Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(cmt)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(hai cạnh tương ứng)
mà DC>DE(ΔDEC vuông tại E)
nên DF>DE
a) Ta có: \(BC^2=AB^2+AC^2\) (do \(5^2=4^2+3^2\) )
\(\Rightarrow\Delta ABC\) vuông tại A
b) Xét 2 tam giác vuông BDA và BDE, có:
Góc ABD = góc EBD (phân giác BD của góc B)
BD là cạnh chung
\(\Rightarrow\) \(\Delta\) vuông BDA = \(\Delta\) vuông BDE(cạnh huyền - góc nhọn)
\(\Rightarrow\) DA = DE(2 cạnh tương ứng)
c) Xét 2 tam giác vuông ADF và EDC, ta có:
DA = DE (chứng minh a)
góc ADF = góc EDC (đối đỉnh)
\(\Rightarrow\Delta\) vuông ADF = \(\Delta\) vuông EDC (cạnh góc vuông - góc nhọn)
Ta có: \(\Delta\)ADF là tam giác vuông tại A
\(\Rightarrow\) DF là cạnh huyền của tam giác ADF
\(\Rightarrow\) DF > DA
Mà DE = DA (\(\Delta ADF=\Delta EDC\) )
nên DF > DE
a. Ta có: 32+42=52
9+16=25
=> Tam giác ABC là tam giác vuông tại A (định lí Py-ta-go đảo)
b. Xét tam giác ABD và tam giác DBE có:
góc A= góc E (=90º)
góc ABD=góc DBE (BD là tia phân giác của góc B)
BD là cạnh huyền chung
=> tam giác ABD = tam giác DBE(cạnh huyền- góc nhọn)
=> DA=DE (2 cạnh tương ứng)
c. Xét tam giác ADF và tam giác EDC có:
góc A= góc E (=90º)
góc ADF=góc EDC (đối đỉnh)
AD=DC (c/m ở câu b)
=> tam giác ADF = tam giác EDC (cạnh góc vuông-góc nhọn kề)
Ta có: góc A>góc C (vì A là góc vuông, C là góc nhọn)
=> DF > DE (quan hệ giữa đường xiên và hình chiếu)
a) Xét 2 tam giác ABC
Áp dụng định lý Pytago đảo có:
BC2 = 5252 = 15
AB2+AC2=32+42=9+16=25
=> Tam giác ABC vuông tại A
b)
Xét 2 tam giác vuông ABD và tam giác EBD có:
Góc B1 = góc B2 (gt)
BD là cạnh huyền chung
=> Tam giác ABD = tam giác EBD (cạnh huyền- góc nhọn)
=> AD=ED (đpcm)
c)
Xét 2 tam giác vuông ADF và tam giác EDC có:
Góc D1 = góc D2 (đối đỉnh)
AD = ED (vì tam giác ABD = tam giác EBD)
=> tam giác ADF = tam giác EDC (cạnh góc vuông- góc nhọn kề cạnh ấy)
=> DF = DC (2 cạnh tương ứng)
Xét tam giác EDC vuông tại E có:
DC > DE ( cạnh huyền > cạnh góc vuông)
mà DF = DC
=> DF > DE (đpcm)
CHÚC BN HỌC TỐT ^-^