K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2021

Do a chia cho 5 dư 1 = a = 5.m + 1 ; b chia 5 dư 2 = b = 5.n+2 ( m,n thuộc N* )

Ta có :

\(a.b=\left(5.m+1\right).\left(5.n+2\right)\)

\(=\left(5.m+1\right).5.n+\left(5m+1\right).2\)

\(=25.m.n+5.n+10.m\)chia cho 5 dư 2

Vậy a.b chia cho 5 dư 2

1:

a chia 5 dư 3 nên a=5k+3

b chia 5 dư 2 nên b=5c+2

a*b=(5k+3)(5c+2)

=25kc+10k+15c+6

=5(5kc+2k+3c+1)+1 chia 5 dư 1

2:

Gọi ba số liên tiếp là a;a+1;a+2

Theo đề, ta có: 

(a+1)(a+2)-a(a+1)=50

=>a^2+3a+2-a^2-a=50

=>2a+2=50

=>2a=48

=>a=24

=>Ba số cần tìm là 24;25;26

7 tháng 7 2016

Đặt \(a=5k+2\)

      \(b=5h+3\)

\(\Rightarrow ab=\left(5k+2\right)\left(5h+3\right)\)

\(=25kh+15k+10h+6\)

\(=25kh+15k+10h+5+1\)

\(=5\left(5kh+3k+2h+1\right)+1\) chia 5 dư 1.

Vậy ab chai 5 dư 1.

12 tháng 9 2021

up

u

u

u

u

u

 

 

uuupppppppppppp

Bài 2: 

a: Ta có: \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)

\(=n^2+5n-n^2-2n+3n+6\)

\(=6n+6⋮6\)

b: Ta có: \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)

\(=n^2-1-n^2+12n-35\)

\(=12n-36⋮12\)

13 tháng 3 2020

Đặt \(a=3k+1;b=3n+2\)

Ta có:\(ab=\left(3k+1\right)\left(3n+2\right)=9kn+6k+3n+2\) chia 3 dư 2

Vậy ab chia 3 dư 2

13 tháng 3 2020

đương nhiên là dư 2 rùi

4 tháng 8 2020

nếu a và b đều là 2 số tự nhiên có 1 chữ số thì
a là 7/6 dư 1
b là 8 chia 6 dư 2
 

4 tháng 8 2020

a chia 6 dư 1=> a=6n+1
b chia 6 dư 2=>b=6n+2
Do đó ab=(6n+1)(6n+2)=36n2+18n+2
=> ab chia 6 dư 2

17 tháng 6 2019

a chia 7 dư 1 => a=7x+1 ( x thuộc N)

b chia 7 dư 2 => b=7k+2 (k thuộc N)

=>  ab=(7x+1)(7k+2)=49xk+14x+7k+2

vì 49xk; 14x; 7k đều chia hết cho 7

=> tích ab chia 7 dư 2

17 tháng 6 2019

Gọi \(a=3k+1;b=3m+2\)

Ta có:\(ab=\left(3k+1\right)\left(3m+2\right)=9km+6k+3m+2\) chia 3 dư 2.

Vậy....

5 tháng 7 2021

a có dạng là 4x+2

b có dạng là 4y+2

\(\left(4x+2\right)\left(4y+2\right)\)

\(16xy+8y+8x+4\)

\(4\left(4xy+2y+2x+1\right)⋮4\)

vậy đáp án \(a\left(dư0\right)\)

2 tháng 10 2019

Bài 1: 

Vì a chia cho 3 dư 1 \(\Rightarrow a\equiv1\left(mod3\right)\)

b chia cho 3 dư 2 \(\Rightarrow b\equiv2\left(mod3\right)\)

\(\Rightarrow ab\equiv2\left(mod3\right)\)

Vậy ab chia cho 3 dư 2 

Cách 2: ( hướng dẫn)

a chia 3 dư 1 nên a=3k+1(k thuộc N ) b chia 3 dư 2 nên b=3k+2 ( k thuộc N )

Từ đó nhân ra ab=(3k+1)(3k+2) rồi chứng minh

Bài 2:

Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

Vì \(n\)nguyên \(\Rightarrow-5n⋮5\)

\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\left(đpcm\right)\)

2 tháng 10 2019

cảm ơn bạn lê tài bảo châu nhé