K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

Trí zẹp zai

24 tháng 9 2017

Bùi Thị Thu Hiền làm con mẹ gì vậy?

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

1:

a chia 5 dư 3 nên a=5k+3

b chia 5 dư 2 nên b=5c+2

a*b=(5k+3)(5c+2)

=25kc+10k+15c+6

=5(5kc+2k+3c+1)+1 chia 5 dư 1

2:

Gọi ba số liên tiếp là a;a+1;a+2

Theo đề, ta có: 

(a+1)(a+2)-a(a+1)=50

=>a^2+3a+2-a^2-a=50

=>2a+2=50

=>2a=48

=>a=24

=>Ba số cần tìm là 24;25;26

2 tháng 10 2019

Bài 1: 

Vì a chia cho 3 dư 1 \(\Rightarrow a\equiv1\left(mod3\right)\)

b chia cho 3 dư 2 \(\Rightarrow b\equiv2\left(mod3\right)\)

\(\Rightarrow ab\equiv2\left(mod3\right)\)

Vậy ab chia cho 3 dư 2 

Cách 2: ( hướng dẫn)

a chia 3 dư 1 nên a=3k+1(k thuộc N ) b chia 3 dư 2 nên b=3k+2 ( k thuộc N )

Từ đó nhân ra ab=(3k+1)(3k+2) rồi chứng minh

Bài 2:

Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

Vì \(n\)nguyên \(\Rightarrow-5n⋮5\)

\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\left(đpcm\right)\)

2 tháng 10 2019

cảm ơn bạn lê tài bảo châu nhé

8 tháng 6 2017

Bài 1:

Giải:

Đặt \(a=3x+1\)

\(b=3y+2\)

\(ab=\left(3x+1\right)\left(3y+2\right)\)

\(=9xy+6x+3y+2\)

\(=3\left(3xy+2x+y\right)+2\)

\(\Rightarrow ab\) chia 3 dư 2 ( đpcm )

Vậy...

Bài 2:

Giải:

Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n⋮5\forall n\in Z\)

\(\Rightarrowđpcm\)

Vậy...

8 tháng 6 2017

Giải:

a) Theo đề bài ta có:

\(a=3q+1\left(q\in n\right)\)

\(b=3k+2\left(k\in n\right)\)

\(\Rightarrow ab=\left(3q+1\right).\left(3k+2\right)\)

\(=9qk+6q+3k+2\)

\(=3.\left(3qk+2q+k\right)+2\)

Ta thấy: \(3.\left(3qk+2q+k\right)⋮3\)

\(2\) không chia hết cho \(3\)\(2< 3\)

\(\Rightarrow ab\) chia cho \(3\)\(2\)

b) Ta có:

\(n.\left(2n-3\right)-2n.\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

\(-5⋮5\)

Do đó: \(-5n⋮5\)

\(\Rightarrow n.\left(2n-3\right)-2n.\left(n+1\right)\) chia hết cho \(5\) với mọi số nguyên n.

21 tháng 6 2016

đặt a=3q+1,b=3p+2 (q; p thuocN). Ta có a.b= 9pq+ 6q + 3p +2. Vậy.....

12 tháng 7 2019

a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)

Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)

                \(=3\left(mn+2m+n\right)+2\)

Vậy ab chia 3 dư 2 .

b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)

Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)

Vậy \(a^2\) chia 5 dư 1 .

21 tháng 6 2017

Bài 1 :

Ta có :

a chia 3 dư 1 \(\Rightarrow a=3k+1\)

b chia 3 dư 2 \(\Rightarrow b=3k_1+2\) \(\left(k;k_1\in N\right)\)

\(ab=\left(3k+1\right)\left(3k_1+2\right)=3k.k_1+2.3k+3.k_1+2\)

\(3k.k_1+2.3k+3.k_1⋮3\)

\(\Rightarrow3k.k_1+2.3k+3.k_1+2\) chia 3 dư 2

\(\Rightarrow ab\) chia 3 dư 2 \(\rightarrowđpcm\)

Bài 2 :

Ta có :

\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n⋮5\)

\(\Rightarrow n\left(2n-3\right)-3n\left(n+1\right)⋮5\) với mọi n

\(\rightarrowđpcm\)