Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left(\dfrac{x+2001}{5}+1\right)+\left(\dfrac{x+1999}{7}+1\right)+\left(\dfrac{x+1997}{9}+1\right)+\left(\dfrac{x+1995}{11}+1\right)=0\)
=>x+2006=0
=>x=-2006
b: \(\Leftrightarrow\left(\dfrac{x-15}{100}-1\right)+\left(\dfrac{x-10}{105}-1\right)+\left(\dfrac{x-100}{5}-1\right)=\left(\dfrac{x-100}{15}-1\right)+\left(\dfrac{x-105}{10}-1\right)+\left(\dfrac{x-110}{5}-1\right)\)
=>x-105=0
=>x=105
\(\frac{x-1986-1987}{1985}+\frac{x-1985-1987}{1986}+\frac{x-1985-1986}{1987}=3\)
=> \(\left(\frac{x-1986-1987}{1985}-1\right)+\left(\frac{x-1985-1987}{1986}-1\right)+\left(\frac{x-1985-1986}{1987}-1\right)=3-3\)
=> \(\frac{x-1985-1986-1987}{1985}+\frac{x-1985-1986-1987}{1986}+\frac{x-1985-1986-1987}{1987}=0\)
=> \(\left(x-1985-1986-1987\right).\left(\frac{1}{1985}+\frac{1}{1986}+\frac{1}{1987}\right)=0\)
=> \(\left(x-5958\right).\left(\frac{1}{1985}+\frac{1}{1986}+\frac{1}{1987}\right)=0\)
Mà \(\frac{1}{1985}+\frac{1}{1986}+\frac{1}{1987}\ne0\)
=> x - 5958 = 0
=> x = 5958
Ta có : \(\frac{x-1991}{9}+\frac{x-1993}{7}+\frac{x-1995}{5}+\frac{x-1997}{3}+\frac{x-1999}{1}\)\(=\frac{x-9}{1991}+\frac{x-7}{1993}+\frac{x-5}{1995}+\frac{x-3}{1997}+\frac{x-1}{1999}\)
\(\Rightarrow\left(\frac{x-1991}{9}-1\right)+\left(\frac{x-1993}{7}-1\right)+\left(\frac{x-1995}{5}-1\right)+\left(\frac{x-1997}{3}-1\right)+\left(\frac{x-1999}{1}-1\right)\)
\(=\left(\frac{x-9}{1991}-1\right)+\left(\frac{x-7}{1993}-1\right)+\left(\frac{x-5}{1995}-1\right)+\left(\frac{x-3}{1997}-1\right)+\left(\frac{x-1}{1999}\right)\)
\(\Rightarrow\frac{x-2000}{9}+\frac{x-2000}{7}+\frac{x-2000}{5}+\frac{x-2000}{3}\)
\(=\frac{x-2000}{1991}+\frac{x-2000}{1993}+\frac{x-2000}{1995}+\frac{x-2000}{1997}+\frac{x-2000}{1999}\)
\(\Rightarrow\left(x-2000\right)\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)=\left(x-2000\right)\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\)
\(\Rightarrow\left(x-2000\right)\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(x-2000\right)\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)=0\)
\(\Rightarrow\left(x-2000\right)\left[\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\right]=0\)
Vì \(\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\ne0\)
=> x - 2000 = 0
=> x = 2000
Ta có: \(\dfrac{x-25}{75}+\dfrac{x-15}{85}+\dfrac{x-5}{95}+\dfrac{x-145}{15}=0\)
\(\Leftrightarrow\dfrac{x-25}{75}-1+\dfrac{x-15}{85}-1+\dfrac{x-5}{95}-1+\dfrac{x-145}{15}+3=0\)
\(\Leftrightarrow\dfrac{x-100}{75}+\dfrac{x-100}{85}+\dfrac{x-100}{95}+\dfrac{x-100}{15}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{75}+\dfrac{1}{85}+\dfrac{1}{95}+\dfrac{1}{15}\right)=0\)
mà \(\dfrac{1}{75}+\dfrac{1}{85}+\dfrac{1}{95}+\dfrac{1}{15}>0\)
nên x-100=0
hay x=100
Vậy: S={100}