K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

\(\dfrac{-13}{4}.\dfrac{3}{7}-\dfrac{13}{4}.\dfrac{10}{7}-\dfrac{13}{7}\)

\(=\dfrac{13}{4}.\dfrac{-3}{7}-\dfrac{13}{4}.\dfrac{10}{7}-\dfrac{13}{7}\)

\(=\dfrac{13}{4}.\left(\dfrac{-3}{7}-\dfrac{10}{7}\right)-\dfrac{13}{7}\)

\(=\dfrac{13}{4}.\dfrac{-13}{7}-\dfrac{13}{7}\)

\(=\dfrac{-13}{4}.\dfrac{13}{7}-\dfrac{13}{7}\)

\(=\dfrac{13}{7}.\left(\dfrac{-13}{4}-1\right)\)

\(=\dfrac{13}{7}.-\dfrac{17}{4}\)

\(=-\dfrac{221}{28}\)

17 tháng 12 2023

* Cách làm nhanh: Với biểu thức như trên, hai phân số nhân với nhau có thể đổi dấu cho nhau.*

23 tháng 8 2018

1) = \(\frac{3}{5}\)

2) =\(\frac{6}{7}\)

3)\(\frac{9}{13}\)

4)\(\frac{4}{13}\)

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

6 tháng 10 2023

\(a.\dfrac{-3}{8}-\dfrac{13}{65}+\dfrac{3}{8}=\left(\dfrac{3}{8}-\dfrac{3}{8}\right)-\dfrac{13}{65}=-\dfrac{13}{65}\)

\(b.\left(\dfrac{-13}{7}-\dfrac{4}{9}\right)-\left(-\dfrac{10}{7}-\dfrac{4}{9}\right)=\dfrac{-13}{7}-\dfrac{4}{9}+\dfrac{10}{7}+\dfrac{4}{9}\\ =\left(\dfrac{-13}{7}+\dfrac{10}{7}\right)+\left(\dfrac{4}{9}-\dfrac{4}{9}\right)=-\dfrac{3}{7}\)

\(c.17\dfrac{1}{3}\cdot\left(\dfrac{-3}{7}\right)+3\dfrac{2}{3}\cdot\left(\dfrac{-3}{7}\right)=\dfrac{-3}{7}\cdot\left(17\dfrac{1}{3}+3\dfrac{2}{3}\right)\\ =\dfrac{-3}{7}\cdot\left(\dfrac{52}{3}+\dfrac{11}{3}\right)=\dfrac{-3}{7}\cdot21=-9\)

26 tháng 9 2018

=7/3 x (-7/13-6/13)+4/3

=7/3*(-1)+4/3

=-7/3+4/3

=-1

ez:)))))

27 tháng 8 2018

9/13 x 7/12 + 9/13 x 5/12 - 9/13

= 9/13 x (7/12 + 5/12 - 1)

= 9/13 x 0

= 0

4/13 x 5/12 + 4/13 x 7/12 - 4/3

= 4/13 x (5/12 + 7/12) - 4/3

= 4/13 x 1 - 4/3

= 4/13 - 4/3

= -40/39

27 tháng 8 2018

a) 9/13 x 7/12 + 9/13 x 5/12 - 9/13

= 9/13 x ( 5/12 + 7/12 - 1 )

= 9/13 x 0

= 0

b) 4/13 x 5/12 + 4/13 x 7/ 12 - 4/3

= 4/13 x ( 5/12 + 7/12 - 13/3 )

= 4/13 x ( - 10/3 )

= -40/39 

12 tháng 8 2020

/ là phân số nha

11/13-(5/42-x)=(15/28-11/13)

11/13-(5/42-x)=-37/182

(5/42-x)=11/13+37/182

(5/42-x)=191/182

x=5/42-191/182

x=-254/273

vậy x=-254/273

a: 2x-3/2+3/4=-4

=>2x-3/4=-4

=>2x=-13/4

hay x=-13/8

b: \(\left(-\dfrac{2}{3}x-\dfrac{3}{5}\right)\cdot\left(\dfrac{-3}{2}-\dfrac{10}{3}\right)=\dfrac{2}{5}\)

\(\Leftrightarrow-\dfrac{2}{3}x-\dfrac{3}{5}=\dfrac{2}{5}:\dfrac{-29}{6}=\dfrac{-2}{5}\cdot\dfrac{6}{29}=\dfrac{-12}{145}\)

=>2/3x+3/5=12/145

=>2/3x=-15/29

hay x=-45/58

c: \(\dfrac{x}{2}-\left(\dfrac{3}{5}x-\dfrac{13}{5}\right)=-\left(\dfrac{7}{10}x+\dfrac{7}{5}\right)\)

=>1/2x-3/5x+13/5=-7/10x-7/5

=>-1/10x+7/10x=-7/5-13/5

=>3/5x=-2

hay x=-2:3/5=-10/3

5 tháng 10 2020

Bài 1 :

a) \(\frac{12}{21}-\frac{3}{7}+\left(-\frac{2}{3}\right)=\frac{4}{7}-\frac{3}{7}+\left(-\frac{2}{3}\right)=\frac{1}{7}-\frac{2}{3}=-\frac{11}{21}\)

b) \(\left(-\frac{25}{13}\right)+\left(-\frac{9}{17}\right)+\frac{12}{13}+\left(-\frac{25}{17}\right)\)

\(=\left[\left(-\frac{25}{13}\right)+\frac{12}{13}\right]+\left[\left(-\frac{9}{17}\right)+\left(-\frac{25}{17}\right)\right]\)

\(=-1+\left(-2\right)=-1-2=-3\)

c) \(\frac{5}{9}\cdot\frac{7}{13}+\frac{5}{9}\cdot\frac{9}{13}-\frac{5}{9}\cdot\frac{3}{13}=\frac{5}{9}\left(\frac{7}{13}+\frac{9}{13}-\frac{3}{13}\right)=\frac{5}{9}\cdot1=\frac{5}{9}\)

Bài 2 :

a)  \(\frac{2}{3}x+\frac{5}{7}=\frac{3}{10}\)

=> \(\frac{2}{3}x=\frac{3}{10}-\frac{5}{7}=-\frac{29}{70}\)

=> \(x=\left(-\frac{29}{70}\right):\frac{2}{3}=\left(-\frac{29}{70}\right)\cdot\frac{3}{2}=-\frac{87}{140}\)

b) \(x:\frac{5}{2}-\frac{1}{2}=-\frac{2}{3}\)

=> \(x:\frac{5}{2}=-\frac{2}{3}+\frac{1}{2}=-\frac{1}{6}\)

=> \(x=\left(-\frac{1}{16}\right)\cdot\frac{5}{2}=-\frac{5}{32}\)

c) Bạn chỉ cần xét hai trường hợp âm và dương thôi :>

4 tháng 10 2018

x=-36

x=11

x=100

x=14

4 tháng 10 2018

x=-36

x=11

x=100

x=14