Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(4x^2\left(3x^{n+1}-2x^n\right)\)
\(=4x^2\cdot3x^{n+1}-4x^2\cdot2x^n\)
\(=12x^{n+3}-8x^{n+2}\)
b: \(2\left(x^{2n}+2x^ny^n+y^{2n}\right)-y^n\left(4x^n+2y^n\right)\)
\(=2x^{2n}+4x^ny^n+2y^{2n}-4x^ny^n-2y^{2n}\)
\(=2x^{2n}\)
c: \(=\left(x^{3n}-y^{3n}\right)\left(x^{3n}+y^{3n}\right)\)
\(=x^{6n}-y^{6n}\)
d: \(=4^n\cdot4-3\cdot4^n=4^n\)
a: 4x2(3xn+1−2xn)4x2(3xn+1−2xn)
=4x2⋅3xn+1−4x2⋅2xn=4x2⋅3xn+1−4x2⋅2xn
=12xn+3−8xn+2=12xn+3−8xn+2
b: 2(x2n+2xnyn+y2n)−yn(4xn+2yn)2(x2n+2xnyn+y2n)−yn(4xn+2yn)
=2x2n+4xnyn+2y2n−4xnyn−2y2n=2x2n+4xnyn+2y2n−4xnyn−2y2n
=2x2n=2x2n
c: =(x3n−y3n)(x3n+y3n)=(x3n−y3n)(x3n+y3n)
=x6n−y6n=x6n−y6n
d: =4n⋅4−3⋅4n=4n
a: \(4x^2\left(3x^{n+1}-2x^n\right)\)
\(=12x^{n+3}-8x^{n+2}\)
b: \(=2x^{2n}+4x^ny^n+2y^{2n}-4x^ny^n-2y^{2n}\)
\(=2x^{2n}\)
c: \(=\left(x^{3n}-y^{3n}\right)\left(x^{3n}+y^{3n}\right)=x^{6n}-y^{6n}\)
d: \(=4^n\cdot4-3\cdot4^n=4^n\)
a: \(=12x^{n+2}+4x^2-8x^{n+2}\)
\(=4x^{n+2}+4x^2\)
b: \(=2x^{2n}+4x^ny^n+2y^{2n}-4x^ny^n-2y^{2n}\)
\(=2x^{2n}\)
c: \(=\left(x^{3n}-y^{3n}\right)\left(x^{3n}+y^{3n}\right)\)
\(=x^{6n}-y^{6n}\)
d: \(=4^n\cdot4-3\cdot4^n=4^n\)
4.a)n2(n+1)+2n(n+1)=(n+1)(n2+2n)=n(n+1)(n+2)
n,(n+1),(n+2) là ba số nguyên liên tiếp nên chia hết cho 2 và 3
\(\Rightarrow\)n(n+1)(n+2) chia hết cho 6
4 Chứng minh rằng:
a)\(n^2+\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6
Ta có:
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=n^3+3n^2+2n\)
\(=n\left(n^2+3n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Ta thấy n , n+1 và n+2 là ba số tự nhiên liên tiếp
=> n(n+1) (n+2)\(⋮\)6
=> đpcm
b)\(\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8
Ta có:
\(\left(2n-1\right)^3-\left(2n-1\right)\)
\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)
\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1^2\right]\)
\(=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)
\(=\left(2n-1\right).2\left(n-1\right).2n\)
\(=4n\left(2n-1\right)\left(n-1\right)\)
=>\(4n\left(2n-1\right)\left(n-1\right)⋮4\left(1\right)\)
Mà(2n-1)(n-1)=(n+n-1)(n-1)
=>\(\left(2n-1\right)\left(n-1\right)⋮2\left(2\right)\)
Từ (1) và (2)=> Đpcm
c)\(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24
Câu hỏi của Ngoc An Pham - Toán lớp 8 | Học trực tuyến
Chúc bạn học tốt!^^
Bài 1:
Ta có:
\(a+b+c=0\\ \Leftrightarrow a^3+b^3+c^3+3\left(a^2b+a^2c+b^2a+b^2c+c^2a+c^2b+2abc\right)=0\\ \Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\\ \Leftrightarrow a^3+b^3+c^3-3abc=0\\ \Leftrightarrow a^3+b^3+c^3=3abc\left(dpcm\right)\)