Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(cos^22x=\frac{1}{4}\Leftrightarrow\frac{1+cos4x}{2}=\frac{1}{4}\Leftrightarrow cos4x=\frac{-1}{2}\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{\pi}{6}+\frac{k\pi}{2}\\x=\frac{-\pi}{6}+\frac{k\pi}{2}\end{array}\right.\)
Lời giải:
1. $y'=(\sin x)'=\cos x<0$ với mọi $x\in (\frac{\pi}{2}; \frac{3\pi}{2})$ nên hàm nghịch biến trên khoảng đã cho
2. $y'=-\sin x<0$ với mọi $x\in (\frac{\pi}{2}; \pi)$ nên hàm không đồng biến trên khoảng đã cho
3. \(y'=\frac{-1}{\sin ^2x}< 0, \forall x\in (\frac{\pi}{2}; \pi)\cup (\pi; \frac{3\pi}{2})\) nên loại
4. \(y'=\frac{1}{\cos ^2x}>0, \forall x\in (\frac{\pi}{2}; \frac{3\pi}{2})\) nên hàm đồng biến trên khoảng đã cho
Đáp án 4.
\(1.sin3x+sin2x+sinx=cos2x+cosx+1\)
\(\Leftrightarrow2sin2x.cosx+sin2x=2cos^2x+cosx\)
\(\Leftrightarrow sin2x\left(2cosx+1\right)-cosx\left(2cosx+1\right)=0\\\)
\(\Leftrightarrow\left(2cosx-1\right)\left(sin2x-cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\sin2x=sin\left(\frac{\Pi}{2}-x\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\pm\frac{\Pi}{3}+k2\Pi\\x=\frac{\Pi}{6}+m2\Pi orx=\frac{\Pi}{2}+k2\Pi\end{matrix}\right.\)
\(2.cos^2x+cos^23x=sin^22x\)
\(\Leftrightarrow2+cos2x+cos6x=1-cos4x\)
\(\Leftrightarrow1+cos2x+cos6x+cos4x=0\)
\(\Leftrightarrow2cos^2x+2cos5x.cosx=0\)
\(\Leftrightarrow2cosx\left(cosx+cos5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\Pi}{2}+k\Pi\\cos5x=cos\left(\Pi-x\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\Pi}{2}+k\Pi\\5x=\Pi-x+k2\Pi or5x=x-\Pi+k2\Pi\end{matrix}\right.\)
1. \(pt\Leftrightarrow \tan 2x(1-\cos 2x)-(1-\cos 2x)=0\Leftrightarrow (\tan 2x-1)(1-\cos 2x)=0\)
2. Đặt \(t=\sin x+\cos x\Rightarrow t^2=1+2\sin x.\cos x\) thay vào phương trình ta được
\(t-3(t^2-1)=1\Leftrightarrow 3t^2-t-2=0\)