Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(xy^2z^3\) + \(x^2y^3z^4\)+...+\(x^{2014}y^{2015}z^{2016}\)
A \(\times\) \(xyz\) = \(x^2y^3z^4\)+...+\(x^{2014}y^{2015}z^{2016}\) + \(x^{2015}y^{2016}z^{2017}\)
A \(\times\) \(xyz\) - A = \(x^{2015}\)\(y^{2016}\)\(z^{2017}\) - \(xy^2z^3\)
A\(\times\)( \(xyz\) - 1) = \(x^{2015}\)\(y^{2016}z^{2017}\) - \(xy^2z^3\)
A = (\(x^{2015}\) \(y^{2016}\) \(z^{2017}\) - \(xy^2z^3\)) : (\(xyz\) - 1)
Thay \(x\) = -1; \(y\) = -1; \(z\) = -1
A = [(-1)2015.(-1)2016.(-1)2017 - (-1).(-1)2.(-1)3] : {(-1.(-1).(-1) - 1)}
A = [ 1 - 1] : [-1-1]
A = 0: (-2)
A = 0
A = \(xy^2z^3+x^2y^3z^4\) + \(x^{2014}y^{2015}z^{2016}\)
Thay \(x=\) -1; y = -1; z = -1 vào A ta có:
A = (-1).(-1)2.(-1)3 + (-1)2.(-1)3.(-1)4 + (-1)2014.(-1)2015.(-1)2016
A = (-1).1(-1) + 1.(-1).1 + 1.(-1).1
A = 1 - 1 - 1
A = -1
A = +
Thay -1; y = -1; z = -1 vào A ta có:
A = (-1).(-1)2.(-1)3 + (-1)2.(-1)3.(-1)4 + (-1)2014.(-1)2015.(-1)2016
A = (-1).1(-1) + 1.(-1).1 + 1.(-1).1
A = 1 - 1 - 1
A = -1
tick cho mik nha
N=(xy2z3+x2y3z4)+(x3y4z5+x4y5z6)+...+(x2013y2014z2015+x2014y2015z2016)
Xét dạng tổng quát của các nhóm:
x2n-1y2nz2n+1=(-1).1.(-1)=1
x2ny2n+1z2n+2=1.(-1).1=-1
Do đó (x2n-1y2nz2n+1+x2ny2n+1z2n+2)=1+(-1)=0
=>N=0+0+...+0
=0
a) Thay giá trị \(a = 2\), \(b = - 3\) vào biểu thức đã cho, ta có:
\(M = 2(a + b) = 2.(2 + ( - 3)) = 2.(2 - 3) = 2.( - 1) = - 2\).
b) Thay giá trị \(x = - 2\), \(y = - 1\), \(z = 4\) vào biểu thức đã cho, ta có:
\(N = - 3xyz = ( - 3). (- 2). (- 1).4 = 6. (- 1).4 = ( - 6).4 = - 24\).
c) Thay giá trị \(x = - 1\); \(y = - 3\) vào biểu thức đã cho, ta có:
\(P = - 5{x^3}{y^2} + 1 = - 5.{( - 1)^3}.{( - 3)^2} + 1 = (- 5). (- 1).9 + 1 = 5.9 + 1 = 45 + 1 = 46\).
nếu bn ko thấy đc hình ảnh, bn vào thống kê hỏi đáp của mik để tìm ảnh nhé
#Châu's ngốc
thay x = -1 , y = -1 , z = -1 vào N ta có
N = 1 + (-1) + 1 + ... + 1 + (-1)
= [1 + (-1)] + [1 + (-1) ] + ... + [1 + (-1)]
= 0 + 0 + ... + 0
= 0
Khi x=-1;y=-1;z=-1 thì
\(N=\left(-1\right)\left(-1\right)^2\left(-1\right)^3+\left(-1\right)^2\left(-1\right)^3\cdot\left(-1\right)^4+...+\left(-1\right)^{2014}\cdot\left(-1\right)^{2015}\cdot\left(-1\right)^{2016}\)
=1-1+1-1+...+1-1
=0